26 research outputs found

    COVID-19 symptoms at hospital admission vary with age and sex: results from the ISARIC prospective multinational observational study

    Get PDF
    Background: The ISARIC prospective multinational observational study is the largest cohort of hospitalized patients with COVID-19. We present relationships of age, sex, and nationality to presenting symptoms. Methods: International, prospective observational study of 60 109 hospitalized symptomatic patients with laboratory-confirmed COVID-19 recruited from 43 countries between 30 January and 3 August 2020. Logistic regression was performed to evaluate relationships of age and sex to published COVID-19 case definitions and the most commonly reported symptoms. Results: ‘Typical’ symptoms of fever (69%), cough (68%) and shortness of breath (66%) were the most commonly reported. 92% of patients experienced at least one of these. Prevalence of typical symptoms was greatest in 30- to 60-year-olds (respectively 80, 79, 69%; at least one 95%). They were reported less frequently in children (≤ 18 years: 69, 48, 23; 85%), older adults (≥ 70 years: 61, 62, 65; 90%), and women (66, 66, 64; 90%; vs. men 71, 70, 67; 93%, each P < 0.001). The most common atypical presentations under 60 years of age were nausea and vomiting and abdominal pain, and over 60 years was confusion. Regression models showed significant differences in symptoms with sex, age and country. Interpretation: This international collaboration has allowed us to report reliable symptom data from the largest cohort of patients admitted to hospital with COVID-19. Adults over 60 and children admitted to hospital with COVID-19 are less likely to present with typical symptoms. Nausea and vomiting are common atypical presentations under 30 years. Confusion is a frequent atypical presentation of COVID-19 in adults over 60 years. Women are less likely to experience typical symptoms than men

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Formation of Acetamide in Interstellar Medium

    No full text
    Acetamide (C2H5NO) is the largest molecule containing a peptide bond, which is an amine (-NH2) group bonded to a carbonyl (C = O) group, that has yet been detected in interstellar medium (ISM). It is also considered to be a precursor for amino acids (the building blocks of proteins). Formation of acetamide in ISM is believed to occur due based on evidence for the existence of the molecule itself and its component smaller species in ISM. A case study of acetamide is presented here, to introduce a new method to determine its possible formation reaction pathways in ISM based on the molecular formula of a species. All possible species with the same molecular formula as acetamide (C2H5NO) but with different connectivity, the so-called constitutional isomers of the molecule (198 structures, 91 unique species), were created and studied under the extreme conditions of dense molecular clouds. Acetamide was found to be the most stable of the C2H5NO isomer family. Based on the stability of the uni- and bimolecular species, eight reactions were proposed which could led to the formation of acetamide in ISM

    Structural stability analysis of models of dopamine synthesis and d1 receptor trafficking in RPT Cells using CRNT

    No full text
    Dopamine plays an important role in different physiological and metabolic functions, including the control of sodium excretion in the kidney. Studies have shown that there is a positive correlation between a defect in dopamine synthesis and/or dopamine receptor function, and a defect in renal sodium excretion - which may lead to the development of essential hypertension. Specific receptors for dopamine, such as the D1 receptor, have been identified in the various regions within the kidney. It is observed that errors regarding dopamine receptor-G protein coupling and changes in the signaling components may be responsible for the failure of dopamine to increase sodium excretion in hypertensive subjects. In this paper, two symbolic kinetic models of dopamine synthesis and one of dopamine D1 receptor trafficking are presented. The three models are chemical reaction networks constructed and analyzed using Chemical Reaction Network Theory (CRNT), a framework that provides different insights on the static properties of a chemical reaction network regarding the existence of steady states, their multiplicity, and structural stability. It is found that all three networks do not support multiple steady states. © 2019, Department of Science and Technology. All rights reserved

    An Improved Two-Rotor Function for Conformational Potential Energy Surfaces of 20 Amino Acid Diamides

    No full text
    Predicting the three-dimensional structure of a protein from its amino acid sequence requires a complete understanding of the molecular forces that influences the protein folding process. Each possible conformation has its corresponding potential energy, which characterizes its thermodynamic stability. This is needed to identify the primary intra- and intermolecular interactions, so that we can reduce the dimensionality of the problem, and create a relatively simple representation of the system. Investigating this problem using quantum chemical methods, albeit produces accurate results, this also entails large computational resources needed. In this study, an improved two-rotor potential energy function is proposed to represent the backbone interactions in amino acids, through a linear combination of a Fourier series and a mixture of Gaussian functions. This function is applied to approximate the 20 amino acid diamide Ramachandran-type PESs, and results yielded an average RMSE of 2.36 kJ路molThe accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    A Prelude to Building Mathematical Models for Polypeptide Folding: Analysis on the Conformational Potential Energy Hypersurface Cross-Sections of N-Acetyl-Glycyl-Glycine-N'-Methylamide

    No full text
    Finding a relationship on how a three-dimensional protein folds from its linear amino acid chain gets more complex with increasing chain length, so working on a smaller peptide conformational problem can provide initial ideas on what are the main molecular forces and how these influence the folding process. Following the study of conformations of amino acid units entering the proteins to understand the secondary structure of small peptides, this paper proposes mathematical models for the several two-rotor cross-sections of the 5D N-acetyl-glycyl-glycine-N'-methylamide potential energy hypersurface. These cross-sections are extracted along the first glycine subunit, with its coordinates fixed at the five energy minima of the glycine diamide. The resulting mathematical models yield an average RMSE of 1.36 kJ·molThe accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Dimension Reduction in Conformational Analysis: A Two-Rotor Mathematical Model of Amino Acid Diamide Conformational Potential Energy Surface

    No full text
    The conformational potential energy surface (PES) of a molecule provides insights into the relative stability of the possible foldamers. However, the time and space complexity of electronic structure calculations, commonly used to generate PES, increases exponentially with an increasing number of atoms. The use of mathematical functions to model the topology of conformational PES is an alternative to more computer-intensive quantum chemical calculations, but the choice and complexity of functions used are crucial in achieving more accurate results. This paper presents a method to illustrate the topology of amino acid diamide PESs through a linear combination of a Fourier series and a mixture of Gaussian functions. Results yield a significantly small error, with an average RMSE of 4.9946 kJ路molThe accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Erratum to: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) (Autophagy, 12, 1, 1-222, 10.1080/15548627.2015.1100356

    No full text
    non present
    corecore