746 research outputs found

    Increased Sensitivity of Computed Tomography Scan for Neoplastic Tissues Using the Extracellular Vesicle Formulation of the Contrast Agent Iohexol.

    Get PDF
    Computed tomography (CT) is a diagnostic medical imaging modality commonly used to detect disease and injury. Contrast agents containing iodine, such as iohexol, are frequently used in CT examinations to more clearly differentiate anatomic structures and to detect and characterize abnormalities, including tumors. However, these contrast agents do not have a specific tropism for cancer cells, so the ability to detect tumors is severely limited by the degree of vascularization of the tumor itself. Identifying delivery systems allowing enrichment of contrast agents at the tumor site would increase the sensitivity of detection of tumors and metastases, potentially in organs that are normally inaccessible to contrast agents, such as the CNS. Recent work from our laboratory has identified cancer patient-derived extracellular vesicles (PDEVs) as effective delivery vehicles for targeting diagnostic drugs to patients' tumors. Based on this premise, we explored the possibility of introducing iohexol into PDEVs for targeted delivery to neoplastic tissue. Here, we provide preclinical proof-of-principle for the tumor-targeting ability of iohexol-loaded PDEVs, which resulted in an impressive accumulation of the contrast agent selectively into the neoplastic tissue, significantly improving the ability of the contrast agent to delineate tumor boundaries

    Observation of the doubly charmed baryon decay Ξcc++→Ξcâ€Č+π+

    Get PDF
    The Ξcc++→Ξcâ€Č+π+ decay is observed using proton-proton collisions collected by the LHCb experiment at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 5.4 fb−1. The Ξcc++→Ξcâ€Č+π+ decay is reconstructed partially, where the photon from the Ξcâ€Č+→Ξc+Îł decay is not reconstructed and the pK−π+ final state of the Ξc+ baryon is employed. The Ξcc++→Ξcâ€Č+π+branching fraction relative to that of the Ξcc++→Ξc+π+ decay is measured to be 1.41 ± 0.17 ± 0.10, where the first uncertainty is statistical and the second systematic. [Figure not available: see fulltext.

    Test of lepton universality in b→sℓ+ℓ−b \rightarrow s \ell^+ \ell^- decays

    Get PDF
    The first simultaneous test of muon-electron universality using B+→K+ℓ+ℓ−B^{+}\rightarrow K^{+}\ell^{+}\ell^{-} and B0→K∗0ℓ+ℓ−B^{0}\rightarrow K^{*0}\ell^{+}\ell^{-} decays is performed, in two ranges of the dilepton invariant-mass squared, q2q^{2}. The analysis uses beauty mesons produced in proton-proton collisions collected with the LHCb detector between 2011 and 2018, corresponding to an integrated luminosity of 9 fb−1\mathrm{fb}^{-1}. Each of the four lepton universality measurements reported is either the first in the given q2q^{2} interval or supersedes previous LHCb measurements. The results are compatible with the predictions of the Standard Model.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-046.html (LHCb public pages

    Study of charmonium and charmonium-like contributions in B+ → J/ψηK+ decays

    Get PDF
    A study of B+→ J/ψηK+ decays, followed by J/ψ → ÎŒ+Ό− and η → γγ, is performed using a dataset collected with the LHCb detector in proton-proton collisions at centre-of-mass energies of 7, 8 and 13 TeV, corresponding to an integrated luminosity of 9 fb−1. The J/ψη mass spectrum is investigated for contributions from charmonia and charmonium-like states. Evidence is found for the B+→ (ψ2(3823) → J/ψη)K+ and B+→ (ψ(4040) → J/ψη)K+ decays with significance of 3.4 and 4.7 standard deviations, respectively. This constitutes the first evidence for the ψ2(3823) → J/ψη decay

    Observation of Two New Excited Ξb0 States Decaying to Λb0 K-π+

    Get PDF
    Two narrow resonant states are observed in the Λb0K-π+ mass spectrum using a data sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the LHCb experiment and corresponding to an integrated luminosity of 6 fb-1. The minimal quark content of the Λb0K-π+ system indicates that these are excited Ξb0 baryons. The masses of the Ξb(6327)0 and Ξb(6333)0 states are m[Ξb(6327)0]=6327.28-0.21+0.23±0.12±0.24 and m[Ξb(6333)0]=6332.69-0.18+0.17±0.03±0.22 MeV, respectively, with a mass splitting of Δm=5.41-0.27+0.26±0.12 MeV, where the uncertainties are statistical, systematic, and due to the Λb0 mass measurement. The measured natural widths of these states are consistent with zero, with upper limits of Γ[Ξb(6327)0]<2.20(2.56) and Γ[Ξb(6333)0]<1.60(1.92) MeV at a 90% (95%) credibility level. The significance of the two-peak hypothesis is larger than nine (five) Gaussian standard deviations compared to the no-peak (one-peak) hypothesis. The masses, widths, and resonant structure of the new states are in good agreement with the expectations for a doublet of 1D Ξb0 resonances

    Precision measurement of CP\it{CP} violation in the penguin-mediated decay Bs0→ϕϕB_s^{0}\rightarrow\phi\phi

    Get PDF
    A flavor-tagged time-dependent angular analysis of the decay Bs0→ϕϕB_s^{0}\rightarrow\phi\phi is performed using pppp collision data collected by the LHCb experiment at % at s=13\sqrt{s}=13 TeV, the center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 6 fb^{-1}. The CP\it{CP}-violating phase and direct CP\it{CP}-violation parameter are measured to be ϕssˉs=−0.042±0.075±0.009\phi_{s\bar{s}s} = -0.042 \pm 0.075 \pm 0.009 rad and ∣λ∣=1.004±0.030±0.009|\lambda|=1.004\pm 0.030 \pm 0.009 , respectively, assuming the same values for all polarization states of the ϕϕ\phi\phi system. In these results, the first uncertainties are statistical and the second systematic. These parameters are also determined separately for each polarization state, showing no evidence for polarization dependence. The results are combined with previous LHCb measurements using pppp collisions at center-of-mass energies of 7 and 8 TeV, yielding ϕssˉs=−0.074±0.069\phi_{s\bar{s}s} = -0.074 \pm 0.069 rad and ∣lambda∣=1.009±0.030|lambda|=1.009 \pm 0.030. This is the most precise study of time-dependent CP\it{CP} violation in a penguin-dominated BB meson decay. The results are consistent with CP\it{CP} symmetry and with the Standard Model predictions.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-001.html (LHCb public pages

    Observation of the Decay Λ0b→Λ+cÏ„âˆ’ÂŻÎœ

    Get PDF
    The first observation of the semileptonic b-baryon decay Λb0→Λc+τ-ÎœÂŻÏ„, with a significance of 6.1σ, is reported using a data sample corresponding to 3 fb-1 of integrated luminosity, collected by the LHCb experiment at center-of-mass energies of 7 and 8 TeV at the LHC. The τ- lepton is reconstructed in the hadronic decay to three charged pions. The ratio K=B(Λb0→Λc+τ-ÎœÂŻÏ„)/B(Λb0→Λc+π-π+π-) is measured to be 2.46±0.27±0.40, where the first uncertainty is statistical and the second systematic. The branching fraction B(Λb0→Λc+τ-ÎœÂŻÏ„)=(1.50±0.16±0.25±0.23)% is obtained, where the third uncertainty is from the external branching fraction of the normalization channel Λb0→Λc+π-π+π-. The ratio of semileptonic branching fractions R(Λc+)B(Λb0→Λc+τ-ÎœÂŻÏ„)/B(Λb0→Λc+ÎŒ-ÎœÂŻÎŒ) is derived to be 0.242±0.026±0.040±0.059, where the external branching fraction uncertainty from the channel Λb0→Λc+ÎŒ-ÎœÂŻÎŒ contributes to the last term. This result is in agreement with the standard model prediction

    Measurement of the photon polarization in Λb→Λγ\Lambda_b \to \Lambda \gamma decays

    Get PDF
    The photon polarization in b→sÎłb \to s \gamma transitions is measured for the first time in radiative b-baryon decays exploiting the unique spin structure of Λb→Λγ\Lambda_b \to \Lambda \gamma decays. A data sample corresponding to an integrated luminosity of 6  fb−16\;fb^{-1} collected by the LHCb experiment in pppp collisions at a center-of-mass energy of 13  TeV13\;TeV is used. The photon polarization is measured to be αγ=0.82 − 0.26 − 0.13 + 0.17 + 0.04\alpha_{\gamma}= 0.82^{\,+\,0.17\,+\,0.04}_{\,-\,0.26\,-\,0.13}, where the first uncertainty is statistical and the second systematic. This result is in agreement with the Standard Model prediction and previous measurements in b-meson decays. Charge-parity breaking effects are studied for the first time in this observable and found to be consistent with CPCP symmetry.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2021-030.html (LHCb public pages

    First observation of a doubly charged tetraquark and its neutral partner

    Get PDF
    A combined amplitude analysis is performed for the decays B0→D‟0Ds+π−B^0 \rightarrow \overline{D}^0 D^+_s\pi^- and B+→D−Ds+π+B^+\rightarrow D^- D^+_s\pi^+, which are related by isospin symmetry. The analysis is based on data collected by the LHCb detector in proton-proton collisions at center-of-mass energies of 7, 8 and 13 TeV\,\rm{TeV}. The full data sample corresponds to an integrated luminosity of 9 fb−1\,\rm{fb^{-1}}. Two new resonant states with masses of 2.908±0.011±0.020 GeV2.908\pm0.011\pm0.020\,\rm{GeV} and widths of 0.136±0.023±0.011 GeV0.136\pm0.023\pm0.011\,\rm{GeV} are observed, which decay to Ds+π+D^+_s\pi^+ and Ds+π−D^+_s\pi^- respectively. The former state indicates the first observation of a doubly charged open-charm tetraquark state with minimal quark content [csˉudˉ][c\bar{s}u\bar{d}], and the latter state is a neutral tetraquark composed of [csˉuˉd][c\bar{s}\bar{u}d] quarks. Both states are found to have spin-parity 0+0^+, and their resonant parameters are consistent with each other, which suggests that they belong to an isospin triplet.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-026.html (LHCb public pages

    Observation of Cabibbo-suppressed two-body hadronic decays and precision mass measurement of the Ωc0\Omega_{c}^{0} baryon

    Full text link
    The first observation of the singly Cabibbo-suppressed Ωc0→Ω−K+\Omega_{c}^{0}\to\Omega^{-}K^{+} and Ωc0→Ξ−π+\Omega_{c}^{0}\to\Xi^{-}\pi^{+} decays is reported, using proton-proton collision data at a centre-of-mass energy of 13 TeV13\,{\rm TeV}, corresponding to an integrated luminosity of 5.4 fb−15.4\,{\rm fb}^{-1}, collected with the LHCb detector between 2016 and 2018. The branching fraction ratios are measured to be B(Ωc0→Ω−K+)B(Ωc0→Ω−π+)=0.0608±0.0051(stat)±0.0040(syst)\frac{\mathcal{B}(\Omega_{c}^{0}\to\Omega^{-}K^{+})}{\mathcal{B}(\Omega_{c}^{0}\to\Omega^{-}\pi^{+})}=0.0608\pm0.0051({\rm stat})\pm 0.0040({\rm syst}), B(Ωc0→Ξ−π+)B(Ωc0→Ω−π+)=0.1581±0.0087(stat)±0.0043(syst)±0.0016(ext)\frac{\mathcal{B}(\Omega_{c}^{0}\to\Xi^{-}\pi^{+})}{\mathcal{B}(\Omega_{c}^{0}\to\Omega^{-}\pi^{+})}=0.1581\pm0.0087({\rm stat})\pm0.0043({\rm syst})\pm0.0016({\rm ext}). In addition, using the Ωc0→Ω−π+\Omega_{c}^{0}\to\Omega^{-}\pi^{+} decay channel, the Ωc0\Omega_{c}^{0} baryon mass is measured to be M(Ωc0)=2695.28±0.07(stat)±0.27(syst)±0.30(ext) MeV/c2M(\Omega_{c}^{0})=2695.28\pm0.07({\rm stat})\pm0.27({\rm syst})\pm0.30({\rm ext})\,{\rm MeV}/c^{2}, improving the precision of the previous world average by a factor of four.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-011.html (LHCb public pages
    • 

    corecore