28 research outputs found
Brassinosteroids control meristem size by promoting cell cycle progression in Arabidopsis roots
Brassinosteroids (BRs) play crucial roles in plant growth and development. Previous studies have shown that BRs promote cell elongation in vegetative organs in several plant species, but their contribution to meristem homeostasis remains unexplored. Our analyses report that both loss- and gain-of-function BR-related mutants in Arabidopsis thaliana have reduced meristem size, indicating that balanced BR signalling is needed for the optimal root growth. In the BR-insensitive bri1-116 mutant, the expression pattern of the cell division markers CYCB1;1, ICK2/KRP2 and KNOLLE revealed that a decreased mitotic activity accounts for the reduced meristem size; accordingly, this defect could be overcome by the overexpression of CYCD3;1. The activity of the quiescent centre (QC) was low in the short roots of bri1-116, as reported by cell type-specific markers and differentiation phenotypes of distal stem cells. Conversely, plants treated with the most active BR, brassinolide, or mutants with enhanced BR signalling, such as bes1-D, show a premature cell cycle exit that results in early differentiation of meristematic cells, which also negatively influence meristem size and overall root growth. In the stem cell niche, BRs promote the QC renewal and differentiation of distal stem cells. Together, our results provide evidence that BRs play a regulatory role in the control of cell-cycle progression and differentiation in the Arabidopsis root meristem.Fil: González García, Mary Paz. Centre for Research in Agricultural Genomics. Molecular Genetics Department; EspañaFil: Vilarrasa Blasi, Josep. Centre for Research in Agricultural Genomics. Molecular Genetics Department; EspañaFil: Zhiponova, Miroslava. Ghent University. Department of Plant Biotechnology and Genetics; Bélgica. Vlaams Instituut voor Biotechnologie; BélgicaFil: Divol, Fanchon. Centre for Research in Agricultural Genomics. Molecular Genetics Department; EspañaFil: Mora Garcia, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; Argentina. Centre for Research in Agricultural Genomics. Molecular Genetics Department; EspañaFil: Russinova, Eugenia. Ghent University. Department of Plant Biotechnology and Genetics; Bélgica. Vlaams Instituut voor Biotechnologie; BélgicaFil: Caño Delgado, Ana I. Centre for Research in Agricultural Genomics. Molecular Genetics Department; Españ
Paracrine brassinosteroid signaling at the stem cell niche controls cellular regeneration
Stem cell regeneration is crucial for both cell turnover and tissue healing in multicellular organisms. In Arabidopsis roots, a reduced group of cells known as the quiescent center (QC) act as a cell reservoir for surrounding stem cells during both normal growth and in response to external damage. Although cells of the QC have a very low mitotic activity, plant hormones such as brassinosteroids (BRs) can promote QC divisions. Here, we used a tissue-specific strategy to investigate the spatial signaling requirements of BR-mediated QC divisions. We generated stem cell niche-specific receptor knockout lines by placing an artificial microRNA against BRI1 (BRASSINOSTEROID INSENSITIVE 1) under the control of the QC-specific promoter WOX5. Additionally, QC-specific knock-in lines for BRI1 and its downstream transcription factor BES1 (BRI1-EMS-SUPPRESOR1) were also created using the WOX5 promoter. By analyzing the roots of these lines, we show that BES1-mediated signaling cell-autonomously promotes QC divisions, that BRI1 is essential for sensing nearby inputs and triggering QC divisions and that DNA damage promotes BR-dependent paracrine signaling in the stem cell niche as a prerequisite to stem cell replenishment
Multi-omics analysis of green lineage osmotic stress pathways unveils crucial roles of different cellular compartments.
Maintenance of water homeostasis is a fundamental cellular process required by all living organisms. Here, we use the single-celled green alga Chlamydomonas reinhardtii to establish a foundational understanding of osmotic-stress signaling pathways through transcriptomics, phosphoproteomics, and functional genomics approaches. Comparison of pathways identified through these analyses with yeast and Arabidopsis allows us to infer their evolutionary conservation and divergence across these lineages. 76 genes, acting across diverse cellular compartments, were found to be important for osmotic-stress tolerance in Chlamydomonas through their functions in cytoskeletal organization, potassium transport, vesicle trafficking, mitogen-activated protein kinase and chloroplast signaling. We show that homologs for five of these genes have conserved functions in stress tolerance in Arabidopsis and reveal a novel PROFILIN-dependent stage of acclimation affecting the actin cytoskeleton that ensures tissue integrity upon osmotic stress. This study highlights the conservation of the stress response in algae and land plants, and establishes Chlamydomonas as a unicellular plant model system to dissect the osmotic stress signaling pathway
A Sizer model for cell differentiation in Arabidopsis thaliana root growth
Plant roots grow due to cell division in the meristem and subsequent cell elongation and differentiation, a tightly coordinated process that ensures growth and adaptation to the changing environment. How the newly formed cells decide to stop elongating becoming fully differentiated is not yet understood. To address this question, we established a novel approach that combines the quantitative phenotypic variability of wild-type Arabidopsis roots with computational data from mathematical models. Our analyses reveal that primary root growth is consistent with a Sizer mechanism, in which cells sense their length and stop elongating when reaching a threshold value. The local expression of brassinosteroid receptors only in the meristem is sufficient to set this value. Analysis of roots insensitive to signaling and of roots with gibberellin biosynthesis inhibited suggests distinct roles of these hormones on cell expansion termination. Overall, our study underscores the value of using computational modeling together with quantitative data to understand root growth
Regulation of plant stem cell quiescence by a brassinosteroid signaling module
Referred to by: Josep Vilarrasa-Blasi, Mary-Paz González-García, David Frigola, Norma Fàbregas-Vallvé, Konstantinos G. Alexiou, Nuria López-Bigas, Susana Rivas, Alain Jauneau, Jan U. Lohmann, Philip N. Benfey, Marta Ibañes, Ana I. Caño-Delgado
Regulation of Plant Stem Cell Quiescence by a Brassinosteroid Signaling Module
Developmental Cell, Volume 33, Issue 2, 20 April 2015, Pages 238.The quiescent center (QC) maintains the activity of the surrounding stem cells within the root stem cell niche, yet specific molecular players sustaining the low rate of QC cell division remain poorly understood. Here, we identified a R2R3-MYB transcription factor, BRAVO (BRASSINOSTEROIDS AT VASCULAR AND ORGANIZING CENTER), acting as a cell-specific repressor of QC divisions in the primary root of Arabidopsis. Ectopic BRAVO expression restricts overall root growth and ceases root regeneration upon damage of the stem cells, demonstrating the role of BRAVO in counteracting Brassinosteroid (BR)-mediated cell division in the QC cells. Interestingly, BR-regulated transcription factor BES1 (BRI1-EMS SUPRESSOR 1) directly represses and physically interacts with BRAVO in vivo, creating a switch that modulates QC divisions at the root stem cell niche. Together, our results define a mechanism for BR-mediated regulation of stem cell quiescence in plants.J.V.-B. and N.F.-V. are funded by FI PhD fellowship from the Generalitat de Catalunya (GC) in the A.I.C.-D. laboratory. J.V.-B. received a short-term fellowship (BE1-00924) in the Lohmann (J.U.L.) laboratory supported by the SFB873 of the DFG. Research by D.F and M.I. is funded by FIS2012-37655-C02-02 by the Spanish Ministry de Economy and Competitiveness and 2009SGR14 from GC, and D.F. has a PhD fellowship (FPU-AP2009-3736). S.R. is funded by the Laboratoire d’Excellence (LABEX) TULIP (ANR-10-LABX-41). M.-P.G.-G. received a “Juan de la Cierva” postdoctoral contract from the Spanish Ministry of Science in the Ana Caño (A.I.C.-D.) laboratory, and an HFSP short-term fellowship in the Benfey (P.N.B.) laboratory. P.N.B. is funded by NSF Arabidopsis 2010 grant. Work in the Ana Caño (A.I.C.-D.) laboratory is funded by a BIO2010/007 grant from the Spanish Ministry of Innovation and Science and a Marie-Curie Initial Training Network “BRAVISSIMO” (grant no. PITN-GA-2008-215118).Peer reviewe
Aberrant epigenome in iPSC-derived dopaminergic neurons from Parkinson's disease patients
The epigenomic landscape of Parkinson's disease (PD) remains unknown. We performed a genomewide DNA methylation and a transcriptome studies in induced pluripotent stem cell (iPSC)-derived dopaminergic neurons (DAn) generated by cell reprogramming of somatic skin cells from patients with monogenic LRRK2-associated PD (L2PD) or sporadic PD (sPD), and healthy subjects. We observed extensive DNA methylation changes in PD DAn, and of RNA expression, which were common in L2PD and sPD. No significant methylation differences were present in parental skin cells, undifferentiated iPSCs nor iPSC-derived neural cultures not-enriched-in-DAn. These findings suggest the presence of molecular defects in PD somatic cells which manifest only upon differentiation into the DAn cells targeted in PD. The methylation profile from PD DAn, but not from controls, resembled that of neural cultures not-enriched-in-DAn indicating a failure to fully acquire the epigenetic identity own to healthy DAn in PD. The PD-associated hypermethylation was prominent in gene regulatory regions such as enhancers and was related to the RNA and/or protein downregulation of a network of transcription factors relevant to PD (FOXA1, NR3C1, HNF4A, and FOSL2). Using a patient-specific iPSC-based DAn model, our study provides the first evidence that epigenetic deregulation is associated with monogenic and sporadic PD
Spatial analysis of brassinosteroid signaling in the stem cell niche of Arabidopsis primary root = Caracterització molecular de la funció de BRI1 en les cèl·lules mare de lʼarrel dʼArabidopsis
[cat] Aquesta tesi doctoral té com a objectiu principal investigar els efectes de les hormones vegetals esteroides, Brassinosteroids (BRs), durant el desenvolupament de lʼarrel primària dʼArabidopsis thaliana (Arabidopsis). Per tal dʼassolir aquest objectiu hem realitzat una caracterització genètica, fisiològica i anàlisi cel·lular de mutants de BRs. Així mateix, sʼha descobert una nova ruta de senyalització que controla les divisions de les cèl·lules mare mediades per BRs, Els nostres resultats experimentals mostren com els BRs controlen la homeòstasi de les cèl·lules mare de lʼarrel. En concret, els BRs promouen la diferenciació de les cèl·lules mare de la columel·la i la divisió dʼun grup de cèl·lules mitòticament inactives que actuen en el manteniment de les cèl·lules mare, el centre quiescent (QC). Mitjançant un abordatge microgenòmic hem identificat un nou element de la ruta de senyalització dels BRs específic de les cèl·lules mare, BRAVO (Brassinosteroids at Vascular and Organizing Centre). BRAVO és un factor de transcripció R2R3 de la família MYB (MYB56), que actua com a regulador negatiu de les divisions de QC. Els nostres resultats mostren un model de regulació negativa, on BES1 reprimeix directament i interacciona amb BRAVO, creant un interruptor molecular que controla les divisions del QC. El treball realitzat durant aquesta tesis doctoral permet proposar una nova funció dels BRs en el control de les cèl·lules mare. BRAVO dóna plasticitat a les cèl·lules mare per a poder respondre al dany sobre lADN, així com robustesa per evitar-lo. El control de la homeòstasi de les cèl·lules mare en plantes és vital per entendre lʼadaptació dʼaquests organismes sèssils i la longevitat que presenten algunes espècies.[eng] The present PhD thesis work reports the molecular and genetic dissection for the role of plant steroid hormones Brassinosteroids (BRs) in root growth and development of Arabidopsis thaliana (Arabidopsis). A genetic, physiological and cellular analysis of existing BR mutants, together with the discovery of a novel pathway for the control of BR mediated stem cell divisions. The results presented here provide experimental evidence for a role of BRs in stem cell homeostasis in the primary root of Arabidopsis. Specifically, BRs promote columella stem cell differentiation and the division of a set of low mitotic cells called quiescent center (QC) that maintain the surrounding stem cells. Using a microgenomic approach, a novel BR signaling component, BRAVO (Brassinosteroids at Vascular and Organizing Centre) has been identified that is specifically expressed in the stem cells. BRAVO encodes a R2-R3 MYB transcription factor (MYB56) that acts as a negative regulator of BRmediated QC divisions. This study uncovers a fine example of negative regulation model; BRAVO is directly repressed and interacts with BES1 creating a molecular switch that controls QC divisions. The work carried out during this PhD thesis shed light to a new function of brassinosteroids in the regulation of stem cells. BRAVO provides plasticity to the stem cells to response to DNA damage, and at the same time robustness to ensure QC function upon damage. The control of plant stem cell homeostasis is pivotal to understand plant adaptation to environmental changing conditions and provides a new mechanism to understand plants life span
Paracrine brassinosteroid signaling at the stem cell niche controls cellular regeneration
Stem cell regeneration is crucial for both cell turnover and tissue healing in multicellular organisms. In Arabidopsis roots, a reduced group of cells known as the quiescent center (QC) act as a cell reservoir for surrounding stem cells during both normal growth and in response to external damage. Although cells of the QC have a very low mitotic activity, plant hormones such as brassinosteroids (BRs) can promote QC divisions. Here, we used a tissue-specific strategy to investigate the spatial signaling requirements of BR-mediated QC divisions. We generated stem cell niche-specific receptor knockout lines by placing an artificial microRNA against BRI1 (BRASSINOSTEROID INSENSITIVE 1) under the control of the QC-specific promoter WOX5. Additionally, QC-specific knock-in lines for BRI1 and its downstream transcription factor BES1 (BRI1-EMS-SUPPRESOR1) were also created using the WOX5 promoter. By analyzing the roots of these lines, we show that BES1-mediated signaling cell-autonomously promotes QC divisions, that BRI1 is essential for sensing nearby inputs and triggering QC divisions and that DNA damage promotes BR-dependent paracrine signaling in the stem cell niche as a prerequisite to stem cell replenishment
BES1 regulates the localization of the brassinosteroid receptor BRL3 within the provascular tissue of the Arabidopsis primary root
Brassinosteroid (BR) hormones are important regulators of plant growth and development. Recent studies revealed the cell-specific role of BRs in vascular and stem cell development by the action of cell-specific BR receptor complexes and downstream signaling components in Arabidopsis thaliana. Despite the importance of spatiotemporal regulation of hormone signaling in the control of plant vascular development, the mechanisms that confer cellular specificity to BR receptors within the vascular cells are not yet understood. The present work shows that BRI1-like receptor genes 1 and 3 (BRL1 and BRL3) are differently regulated by BRs. By using promoter deletion constructs of BRL1 and BRL3 fused to GFP/GUS (green fluorescent protein/β-glucuronidase) reporters in Arabidopsis, analysis of their cell-specific expression and regulation by BRs in the root apex has been carried out. We found that BRL3 expression is finely modulated by BRs in different root cell types, whereas the location of BRL1 appears to be independent of this hormone. Physiological and genetic analysis show a BR-dependent expression of BRL3 in the root meristem. In particular, BRL3 expression requires active BES1, a central transcriptional effector within the BRI1 pathway. ChIP analysis showed that BES1 directly binds to the BRRE present in the BRL3 promoter region, modulating its transcription in different subsets of cells of the root apex. Overall our study reveals the existence of a cell-specific negative feedback loop from BRI1-mediated BES1 transcription factor to BRL3 in phloem cells, while contributing to a general understanding of the spatial control of steroid signaling in plant development
BES1 regulates the localization of the brassinosteroid receptor BRL3 within the provascular tissue of the Arabidopsis primary root
Brassinosteroid (BR) hormones are important regulators of plant growth and development. Recent studies revealed the cell-specific role of BRs in vascular and stem cell development by the action of cell-specific BR receptor complexes and downstream signaling components in Arabidopsis thaliana. Despite the importance of spatiotemporal regulation of hormone signaling in the control of plant vascular development, the mechanisms that confer cellular specificity to BR receptors within the vascular cells are not yet understood. The present work shows that BRI1-like receptor genes 1 and 3 (BRL1 and BRL3) are differently regulated by BRs. By using promoter deletion constructs of BRL1 and BRL3 fused to GFP/GUS (green fluorescent protein/β-glucuronidase) reporters in Arabidopsis, analysis of their cell-specific expression and regulation by BRs in the root apex has been carried out. We found that BRL3 expression is finely modulated by BRs in different root cell types, whereas the location of BRL1 appears to be independent of this hormone. Physiological and genetic analysis show a BR-dependent expression of BRL3 in the root meristem. In particular, BRL3 expression requires active BES1, a central transcriptional effector within the BRI1 pathway. ChIP analysis showed that BES1 directly binds to the BRRE present in the BRL3 promoter region, modulating its transcription in different subsets of cells of the root apex. Overall our study reveals the existence of a cell-specific negative feedback loop from BRI1-mediated BES1 transcription factor to BRL3 in phloem cells, while contributing to a general understanding of the spatial control of steroid signaling in plant development