145 research outputs found

    A Multi-Wavelength Study of Sgr A*: The Role of Near-IR Flares in Production of X-ray, Soft γ\gamma-ray and Sub-millimeter Emission

    Full text link
    (abridged) We describe highlights of the results of two observing campaigns in 2004 to investigate the correlation of flare activity in Sgr A* in different wavelength regimes, using a total of nine ground and space-based telescopes. We report the detection of several new near-IR flares during the campaign based on {\it HST} observations. The level of near-IR flare activity can be as low as 0.15\sim0.15 mJy at 1.6 μ\mum and continuous up to about 40% of the total observing time. Using the NICMOS instrument on the {\it HST}, the {\it XMM-Newton} and CSO observatories, we also detect simultaneous bright X-ray and near-IR flare in which we observe for the first time correlated substructures as well as simultaneous submillimeter and near-IR flaring. X-ray emission is arising from the population of near-IR-synchrotron-emitting relativistic particles which scatter submillimeter seed photons within the inner 10 Schwarzschild radii of Sgr A* up to X-ray energies. In addition, using the inverse Compton scattering picture, we explain the high energy 20-120 keV emission from the direction toward Sgr A*, and the lack of one-to-one X-ray counterparts to near-IR flares, by the variation of the magnetic field and the spectral index distributions of this population of nonthermal particles. In this picture, the evidence for the variability of submillimeter emission during a near-IR flare is produced by the low-energy component of the population of particles emitting synchrotron near-IR emission. Based on the measurements of the duration of flares in near-IR and submillimeter wavelengths, we argue that the cooling could be due to adiabatic expansion with the implication that flare activity may drive an outflow.Comment: 48 pages, 12 figures, ApJ (in press

    HST FOC spectroscopy of the NLR of NGC 4151. I. Gas kinematics

    Get PDF
    We present the results from a detailed kinematic analysis of both ground-based, and Hubble Space Telescope/Faint Object Camera long-slit spectroscopy at sub-arcsec spatial resolution, of the narrow-line region of NGC 4151. In agreement with previous work, the extended emission gas (R > 4") is found to be in normal rotation in the galactic plane, a behaviour that we were able to trace even across the nuclear region, where the gas is strongly disturbed by the interaction with the radio jet, and connects smoothly with the large scale rotation defined by the neutral gas emission. The HST data, at 0.029" spatial resolution, allow us for the first time to truly isolate the kinematic behaviour of the individual clouds in the inner narrow-line region. We find that, underlying the perturbations introduced by the radio ejecta, the general velocity field can still be well represented by planar rotation down to a radius of ~ 0.5" (30 pc), distance at which the rotation curve has its turnover. The most striking result that emerges from our analysis is that the galaxy potential derived fitting the rotation curve changes from a "dark halo" at the ENLR distances to dominated by the central mass concentration in the NLR, with an almost Keplerian fall-off in the 1"< R < 4" interval. The observed velocity of the gas at 0.5" implies a mass of M ~ 10E9 M(sol) within the inner 60 pc. The presence of a turnover in the rotation curve indicates that this central mass concentration is extended. The first measured velocity point (outside the region saturated by the nucleus) would imply an enclosed mass of ~ 5E7 M(sol) within R ~ 0.15" (10 pc) which represents an upper limit to any nuclear point mass.Comment: 30 pages (aaspp4.sty), 14 figures. Fig. 1, 2 and 4 available by anonymous FTP at 143.54.2.51 (cd /pub/winge) as GIF files; or upon request to [email protected]. Accepted for publication in the Astrophysical Journal (part 1

    Dense Molecular Gas Associated with the Circumnuclear Star Forming Ring in the Barred Spiral Galaxy NGC 6951

    Get PDF
    We present high resolution (3" - 5") observations of CO(1-0) and HCN(1-0) emission from the circumnuclear star forming ring in the barred spiral galaxy NGC 6951, a host of a type-2 Seyfert, using the Nobeyama Millimeter Array and 45 m telescope. We find that most of the HCN emission is associated with the circumnuclear ring, where vigorous star formation occurs. The HCN to CO integrated intensity ratio is also enhanced in the star forming ring; the peak value of HCN/CO ratio is 0.18, which is comparable to the ratio in the starbursts NGC 253 and M82. The formation mechanism of dense molecular gas has been investigated. We find that the shocks along the orbit crowding do not promote the formation of the dense molecular gas effectively but enhance the presence of low density GMCs. Instead, gravitational instabilities of the gas can account for the dense molecular gas formation. The HCN/CO ratio toward the Seyfert nucleus of NGC 6951 is a rather normal value (0.086), in contrast with other Seyferts NGC 1068 and M51 where extremely high HCN/CO value of ~ 0.5 have been reported.Comment: 33 pages, 17 figures, to appear in the Astrophysical Journa

    Star Formation Efficiencies at Giant Molecular Cloud Scales in the Molecular Disk of the Elliptical Galaxy NGC 5128 (Centaurus A)

    Get PDF
    We present ALMA CO (1-0) observations toward the dust lane of the nearest elliptical and radio galaxy, NGC 5128 (Centaurus A), with high angular resolution (similar to 1 \u27\u27, or 18 pc), including information from large to small spatial scales and total flux. We find a total molecular gas mass of 1.6 x 10(9) M-circle dot and reveal the presence of filamentary components more extended than previously seen, up to a radius of 4 kpc. We find that the global star formation rate is similar to 1 M-circle dot yr(-1), which yields a star formation efficiency (SFE) of 0.6 Gyr(-1) (depletion time tau = 1.5 Gyr), similar to those in disk galaxies. We show the most detailed view to date (40 pc resolution) of the relation between molecular gas and star formation within the stellar component of an elliptical galaxy, from a scale of several kiloparsecs to the circumnuclear region close to the powerful radio jet. Although on average the SFEs are similar to those of spiral galaxies, the circumnuclear disk (CND) presents SFEs of 0.3 Gyr(-1), lower by a factor of 4 than the outer disk. The low SFE in the CND is in contrast to the high SFEs found in the literature for the circumnuclear regions of some nearby disk galaxies with nuclear activity, probably as a result of larger shear motions and longer active galactic nucleus feedback. The higher SFEs in the outer disk suggest that only central molecular gas or filaments with sufficient density and strong shear motions will remain in similar to 1 Gyr, which will later result in the compact molecular distributions and low SFEs usually seen in other giant ellipticals with cold gas

    First Results from High Angular Resolution ALMA Observations Toward the HL Tau Region

    Get PDF
    We present Atacama Large Millimeter/submillimeter Array (ALMA) observations from the 2014 Long Baseline Campaign in dust continuum and spectral line emission from the HL Tau region. The continuum images at wavelengths of 2.9, 1.3, and 0.87 mm have unprecedented angular resolutions of 0.075 arcseconds (10 AU) to 0.025 arcseconds (3.5 AU), revealing an astonishing level of detail in the circumstellar disk surrounding the young solar analogue HL Tau, with a pattern of bright and dark rings observed at all wavelengths. By fitting ellipses to the most distinct rings, we measure precise values for the disk inclination (46.72pm0.05 degrees) and position angle (+138.02pm0.07 degrees). We obtain a high-fidelity image of the 1.0 mm spectral index (α\alpha), which ranges from α2.0\alpha\sim2.0 in the optically-thick central peak and two brightest rings, increasing to 2.3-3.0 in the dark rings. The dark rings are not devoid of emission, we estimate a grain emissivity index of 0.8 for the innermost dark ring and lower for subsequent dark rings, consistent with some degree of grain growth and evolution. Additional clues that the rings arise from planet formation include an increase in their central offsets with radius and the presence of numerous orbital resonances. At a resolution of 35 AU, we resolve the molecular component of the disk in HCO+ (1-0) which exhibits a pattern over LSR velocities from 2-12 km/s consistent with Keplerian motion around a ~1.3 solar mass star, although complicated by absorption at low blue-shifted velocities. We also serendipitously detect and resolve the nearby protostars XZ Tau (A/B) and LkHa358 at 2.9 mm.Comment: 11 pages, 5 figures, 2 tables, accepted for publication in the Astrophysical Journal Letter

    ALMA Observations of Asteroid 3 Juno at 60 Kilometer Resolution

    Get PDF
    We present Atacama Large Millimeter/submillimeter Array (ALMA) 1.3 mm continuum images of the asteroid 3 Juno obtained with an angular resolution of 0.042 arcseconds (60 km at 1.97 AU). The data were obtained over a single 4.4 hr interval, which covers 60% of the 7.2 hr rotation period, approximately centered on local transit. A sequence of ten consecutive images reveals continuous changes in the asteroid's profile and apparent shape, in good agreement with the sky projection of the three-dimensional model of the Database of Asteroid Models from Inversion Techniques. We measure a geometric mean diameter of 259pm4 km, in good agreement with past estimates from a variety of techniques and wavelengths. Due to the viewing angle and inclination of the rotational pole, the southern hemisphere dominates all of the images. The median peak brightness temperature is 215pm13 K, while the median over the whole surface is 197pm15 K. With the unprecedented resolution of ALMA, we find that the brightness temperature varies across the surface with higher values correlated to the subsolar point and afternoon areas, and lower values beyond the evening terminator. The dominance of the subsolar point is accentuated in the final four images, suggesting a reduction in the thermal inertia of the regolith at the corresponding longitudes, which are possibly correlated to the location of the putative large impact crater. These results demonstrate ALMA's potential to resolve thermal emission from the surface of main belt asteroids, and to measure accurately their position, geometric shape, rotational period, and soil characteristics.Comment: 8 pages, 3 figures, 2 tables, accepted for publication in the Astrophysical Journal Letter

    ALMA Long Baseline Observations of the Strongly Lensed Submillimeter Galaxy HATLAS J090311.6+003906 at z=3.042

    Get PDF
    We present initial results of very high resolution Atacama Large Millimeter/submillimeter Array (ALMA) observations of the zz=3.042 gravitationally lensed galaxy HATLAS J090311.6+003906 (SDP.81). These observations were carried out using a very extended configuration as part of Science Verification for the 2014 ALMA Long Baseline Campaign, with baselines of up to 15 km. We present continuum imaging at 151, 236 and 290 GHz, at unprecedented angular resolutions as fine as 23 milliarcseconds (mas), corresponding to an un-magnified spatial scale of ~180 pc at z=3.042. The ALMA images clearly show two main gravitational arc components of an Einstein ring, with emission tracing a radius of ~1.5". We also present imaging of CO(10-9), CO(8-7), CO(5-4) and H2O line emission. The CO emission, at an angular resolution of ~170 mas, is found to broadly trace the gravitational arc structures but with differing morphologies between the CO transitions and compared to the dust continuum. Our detection of H2O line emission, using only the shortest baselines, provides the most resolved detection to date of thermal H2O emission in an extragalactic source. The ALMA continuum and spectral line fluxes are consistent with previous Plateau de Bure Interferometer and Submillimeter Array observations despite the impressive increase in angular resolution. Finally, we detect weak unresolved continuum emission from a position that is spatially coincident with the center of the lens, with a spectral index that is consistent with emission from the core of the foreground lensing galaxy.Comment: 9 pages, 5 figures and 3 tables, accepted for publication in the Astrophysical Journal Letter

    An Overview of the 2014 ALMA Long Baseline Campaign

    Get PDF
    A major goal of the Atacama Large Millimeter/submillimeter Array (ALMA) is to make accurate images with resolutions of tens of milliarcseconds, which at submillimeter (submm) wavelengths requires baselines up to ~15 km. To develop and test this capability, a Long Baseline Campaign (LBC) was carried out from September to late November 2014, culminating in end-to-end observations, calibrations, and imaging of selected Science Verification (SV) targets. This paper presents an overview of the campaign and its main results, including an investigation of the short-term coherence properties and systematic phase errors over the long baselines at the ALMA site, a summary of the SV targets and observations, and recommendations for science observing strategies at long baselines. Deep ALMA images of the quasar 3C138 at 97 and 241 GHz are also compared to VLA 43 GHz results, demonstrating an agreement at a level of a few percent. As a result of the extensive program of LBC testing, the highly successful SV imaging at long baselines achieved angular resolutions as fine as 19 mas at ~350 GHz. Observing with ALMA on baselines of up to 15 km is now possible, and opens up new parameter space for submm astronomy.Comment: 11 pages, 7 figures, 2 tables; accepted for publication in the Astrophysical Journal Letters; this version with small changes to affiliation
    corecore