11 research outputs found

    Keloid as a Bening disease in adjuvant radiation therapy

    Get PDF

    Prospective individual patient data meta-analysis of two randomized trials on convalescent plasma for COVID-19 outpatients

    Full text link
    Data on convalescent plasma (CP) treatment in COVID-19 outpatients are scarce. We aimed to assess whether CP administered during the first week of symptoms reduced the disease progression or risk of hospitalization of outpatients. Two multicenter, double-blind randomized trials (NCT04621123, NCT04589949) were merged with data pooling starting when = 50 years and symptomatic for <= 7days were included. The intervention consisted of 200-300mL of CP with a predefined minimum level of antibodies. Primary endpoints were a 5-point disease severity scale and a composite of hospitalization or death by 28 days. Amongst the 797 patients included, 390 received CP and 392 placebo; they had a median age of 58 years, 1 comorbidity, 5 days symptoms and 93% had negative IgG antibody-test. Seventy-four patients were hospitalized, 6 required mechanical ventilation and 3 died. The odds ratio (OR) of CP for improved disease severity scale was 0.936 (credible interval (CI) 0.667-1.311); OR for hospitalization or death was 0.919 (CI 0.592-1.416). CP effect on hospital admission or death was largest in patients with <= 5 days of symptoms (OR 0.658, 95%CI 0.394-1.085). CP did not decrease the time to full symptom resolution

    Comparison of quantification methods to measure fire-derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere

    No full text
    Black carbon (BC), the product of incomplete combustion of fossil fuels and biomass (called elemental carbon (EC) in atmospheric sciences), was quantified in 12 different materials by 17 laboratories from different disciplines, using seven different methods. The materials were divided into three classes: (1) potentially interfering materials, (2) laboratory-produced BC-rich materials, and (3) BC-containing environmental matrices (from soil, water, sediment, and atmosphere). This is the first comprehensive intercomparison of this type (multimethod, multilab, and multisample), focusing mainly on methods used for soil and sediment BC studies. Results for the potentially interfering materials (which by definition contained no fire-derived organic carbon) highlighted situations where individual methods may overestimate BC concentrations. Results for the BC-rich materials (one soot and two chars) showed that some of the methods identified most of the carbon in all three materials as BC, whereas other methods identified only soot carbon as BC. The different methods also gave widely different BC contents for the environmental matrices. However, these variations could be understood in the light of the findings for the other two groups of materials, i.e., that some methods incorrectly identify non-BC carbon as BC, and that the detection efficiency of each technique varies across the BC continuum. We found that atmospheric BC quantification methods are not ideal for soil and sediment studies as in their methodology these incorporate the definition of BC as light-absorbing material irrespective of its origin, leading to biases when applied to terrestrial and sedimentary materials. This study shows that any attempt to merge data generated via different methods must consider the different, operationally defined analytical windows of the BC continuum detected by each technique, as well as the limitations and potential biases of each technique. A major goal of this ring trial was to provide a basis on which to choose between the different BC quantification methods in soil and sediment studies. In this paper we summarize the advantages and disadvantages of each method. In future studies, we strongly recommend the evaluation of all methods analyzing for BC in soils and sediments against the set of BC reference materials analyzed here

    Cartographic Style in the First Urban Maps of Cadiz, Spain: A Technique in Transition

    No full text
    This article deals with the cartometric analysis of various seventeenth-century urban maps of the city of Cadiz (Spain), from among which the so-called Vista Arámburu and the map belonging to the atlas of the Marquis of Heliche, discovered in the Krigsarkivet (Military Archive) of Stockholm, stand out for their uniqueness. These hitherto relatively unknown documents present evidence of an evolution of cartographic style towards greater topographic accuracy and hence cannot just be considered as simple drawings. In this seventeenth-century period of transition, the cartography of the city evolved from sixteenth-century aerial-view perspectives to the exhaustive planimetric maps of the eighteenth century, made by Spanish and French Military Corps of Engineers. These documents hold great historical value, not only due to the importance of Cadiz during the Modern Age but also because these maps constitute a graphic testimony of the fortification and growth of the city in this period. © 2019 British Cartographic Society

    Distribution and thermal stability of physically and chemically protected organic matter fractions in soils across different ecosystems

    No full text
    Accrual of carbon (C) and nitrogen (N) in soil is a significant and realizable management option to mitigate climate change; thus, a clear understanding of the mechanisms controlling the persistence of C and N in soil organic matter (SOM) across different ecosystems has never been more needed. Here, we investigated SOM distribution between physically and chemically stabilized fractions in soils from a variety of ecosystems (i.e., coniferous and broadleaved forest soils, grassland soils, technosols, and agricultural soils). Using elemental and thermal analyses, we examined changes in the quantity and quality of physically fractionated SOM pools characterized by different mechanisms of protection from decomposition. Independently of the ecosystem type, most of the organic C and total N were found in the mineral-associated SOM pool, known to be protected mainly by chemical mechanisms. Indexes of thermal stability and C/N ratio of this heavy SOM fraction were lower (especially in agricultural soils) compared to light SOM fractions found free or occluded in aggregates, and suggested a marked presence of inherently labile compounds. Our results confirm that the association of labile organic molecules with soil minerals is a major stabilization mechanism of SOM, and demonstrate that this is a generalizable finding occurring across different mineral soils and ecosystems

    Comparison of quantification methods to measure fire-derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere

    Get PDF
    Black carbon (BC), the product of incomplete combustion of fossil fuels and biomass (called elemental carbon (EC) in atmospheric sciences), was quantified in 12 different materials by 17 laboratories from different disciplines, using seven different methods. The materials were divided into three classes: (1) potentially interfering materials, (2) laboratory-produced BC-rich materials, and (3) BC-containing environmental matrices (from soil, water, sediment, and atmosphere). This is the first comprehensive intercomparison of this type (multimethod, multilab, and multisample), focusing mainly on methods used for soil and sediment BC studies. Results for the potentially interfering materials (which by definition contained no fire-derived organic carbon) highlighted situations where individual methods may overestimate BC concentrations. Results for the BC-rich materials (one soot and two chars) showed that some of the methods identified most of the carbon in all three materials as BC, whereas other methods identified only soot carbon as BC. The different methods also gave widely different BC contents for the environmental matrices. However, these variations could be understood in the light of the findings for the other two groups of materials, i.e., that some methods incorrectly identify non-BC carbon as BC, and that the detection efficiency of each technique varies across the BC continuum. We found that atmospheric BC quantification methods are not ideal for soil and sediment studies as in their methodology these incorporate the definition of BC as light-absorbing material irrespective of its origin, leading to biases when applied to terrestrial and sedimentary materials. This study shows that any attempt to merge data generated via different methods must consider the different, operationally defined analytical windows of the BC continuum detected by each technique, as well as the limitations and potential biases of each technique. A major goal of this ring trial was to provide a basis on which to choose between the different BC quantification methods in soil and sediment studies. In this paper we summarize the advantages and disadvantages of each method. In future studies, we strongly recommend the evaluation of all methods analyzing for BC in soils and sediments against the set of BC reference materials analyzed here

    Technological exploitation of Deuterium-Tritium operations at JET in support of ITER design, operation and safety

    No full text
    Within the framework of the EUROfusion programme, a work-package of technology projects (WPJET3) is being carried out in conjunction with the planned Deuterium-Tritium experiment on JET (DTE2) with the objective of maximising the scientific and technological return of DT operations at JET in support of ITER. This paper presents the progress since the start of the project in 2014 in the preparatory experiments, analyses and studies in the areas of neutronics, neutron induced activation and damage in ITER materials, nuclear safety, tritium retention, permeation and outgassing, and waste production in preparation of DTE2

    Radiation damage and nuclear heating studies in selected functional materials during the JET DT campaign

    No full text
    A new Deuterium-Tritium campaign (DTE2) is planned at JET in the next years, with a proposed 14MeV neutron budget of 1.7×1021, which is nearly an order of magnitude higher than any previous DT campaigns. The neutron and gamma ray fields inside the JET device during DT plasma operations at specific locations have previously been evaluated. It is estimated that a total neutron fluence on the first wall of JET of up to 1020 n/m2 could be achieved, which is comparable to the fluence occurring in ITER at the end of life in the rear part of the port plug, where several diagnostic components will be located.The purpose of the present work is to evaluate the radiation damage and nuclear heating in selected functional materials to be irradiated at JET during DT plasma operation. These quantities are calculated with the use of the MCNP6 code and the FISPACT II code. In particular the neutron and gamma ray fields at specific locations inside the JET device, dedicated to material damage studies, were characterized. The emphasis is on a potential long term irradiation station located close to the first wall at outboard midplane, offering the opportunity to irradiate samples of functional materials used in ITER diagnostics, to assess the degradation of the physical properties. The radiation damage and the nuclear heating were calculated for selected materials irradiated in these positions and for the neutron flux and fluence expected in DTE2. The studied candidate functional materials include, among others, Sapphire, YAG, ZnS, Spinel, Diamond. In addition the activation of the internal irradiation holder itself was calculated with FISPACT. Damage levels in the range of 10-5 dpa were found
    corecore