17 research outputs found

    Genome-wide association identifies ATOH7 as a major gene determining human optic disc size

    Get PDF
    Optic nerve assessment is important for many blinding diseases, with cup-to-disc ratio (CDR) assessments commonly used in both diagnosis and progression monitoring of glaucoma patients. Optic disc, cup, rim area and CDR measurements all show substantial variation between human populations and high heritability estimates within populations. To identify loci underlying these quantitative traits, we performed a genome-wide association study in two Australian twin cohorts and identified rs3858145, P = 6.2 × 10−10, near the ATOH7 gene as associated with the mean disc area. ATOH7 is known from studies in model organisms to play a key role in retinal ganglion cell formation. The association with rs3858145 was replicated in a cohort of UK twins, with a meta-analysis of the combined data yielding P = 3.4 × 10−10. Imputation further increased the evidence for association for several SNPs in and around ATOH7 (P = 1.3 × 10−10 to 4.3 × 10−11, top SNP rs1900004). The meta-analysis also provided suggestive evidence for association for the cup area at rs690037, P = 1.5 × 10−7, in the gene RFTN1. Direct sequencing of ATOH7 in 12 patients with optic nerve hypoplasia, one of the leading causes of blindness in children, revealed two novel non-synonymous mutations (Arg65Gly, Ala47Thr) which were not found in 90 unrelated controls (combined Fisher's exact P = 0.0136). Furthermore, the Arg65Gly variant was found to have very low frequency (0.00066) in an additional set of 672 controls

    SDOCT Imaging to Identify Macular Pathology in Patients Diagnosed with Diabetic Maculopathy by a Digital Photographic Retinal Screening Programme

    Get PDF
    INTRODUCTION: Diabetic macular edema (DME) is an important cause of vision loss. England has a national systematic photographic retinal screening programme to identify patients with diabetic eye disease. Grading retinal photographs according to this national protocol identifies surrogate markers for DME. We audited a care pathway using a spectral-domain optical coherence tomography (SDOCT) clinic to identify macular pathology in this subset of patients. METHODS: A prospective audit was performed of patients referred from screening with mild to moderate non-proliferative diabetic retinopathy (R1) and surrogate markers for diabetic macular edema (M1) attending an SDOCT clinic. The SDOCT images were graded by an ophthalmologist as SDOCT positive, borderline or negative. SDOCT positive patients were referred to the medical retina clinic. SDOCT negative and borderline patients were further reviewed in the SDOCT clinic in 6 months. RESULTS: From a registered screening population of 17 551 patients with diabetes mellitus, 311 patients met the inclusion criteria between (March 2008 and September 2009). We analyzed images from 311 patients' SDOCT clinic episodes. There were 131 SDOCT negative and 12 borderline patients booked for revisit in the OCT clinic. Twenty-four were referred back to photographic screening for a variety of reasons. A total of 144 were referred to ophthalmology with OCT evidence of definite macular pathology requiring review by an ophthalmologist. DISCUSSION: This analysis shows that patients with diabetes, mild to moderate non-proliferative diabetic retinopathy (R1) and evidence of diabetic maculopathy on non-stereoscopic retinal photographs (M1) have a 42.1% chance of having no macular edema on SDOCT imaging as defined by standard OCT definitions of DME when graded by a retinal specialist. SDOCT imaging is a useful adjunct to colour fundus photography in screening for referable diabetic maculopathy in our screening population

    Ischaemic stroke subtypes and their genetic basis: a comprehensive meta-analysis of small and large vessel stroke.

    No full text
    BACKGROUND: The extent to which genetic effects on the different subtypes of small (SVD) and large vessel disease (LVD) ischaemic stroke differ remains controversial. METHODS: A comprehensive genetic meta-analysis of all genes investigated by ischaemic stroke subtype was conducted. Odds ratio (OR) and 95% confidence intervals (CI) were determined for each gene disease association. RESULTS: From the initial search of 526 manuscripts, 5 candidate genes were studied comprising 7,533 cases (LVD 4,181, SVD 3,352) and 9,835 control subjects. There was a preferential association for SVD compared to LVD with ACE/DD (SVD: OR 1.31, 95% CI 0.96-1.79; LVD: OR 1.02, 95% CI 0.82-1.26) and eNOS intron 4 ab polymorphism (SVD: OR 1.41, 95% CI 0.94-2.11; LVD: OR 1.07, 95% CI 0.77-1.49), although statistical significance was not reached. No such preference was observed for MTHFR C677T, ApoE/epsilon4 or PAI-1 4G/5G polymorphism. The overall number of studies and the number of subjects recruited per study in whom stroke subtype was classified were small when compared to previous published work without such phenotype classification. CONCLUSION: Our findings suggest that genetic effects may differ between small and large vessel subtypes, although the evidence base is small
    corecore