341 research outputs found

    Two Dimensional Modeling of III-V Heterojunction Gate All Around Tunnel Field Effect Transistor

    Get PDF
    Tunnel Field Effect Transistor is one of the extensively researched semiconductor devices, which has captured attention over the conventional Metal Oxide Semiconductor Field Effect Transistor. This device, due to its varied advantages, is considered in applications where devices are scaled down to deep submicron level. Like MOSFETs, many geometries of TFETs have been studied and analyzed in the past few years. This work, presents a two dimensional analytical model for a III-V Heterojunction Surrounding Gate Tunneling Field Effect Transistor. 2-D Poisson’s equation in cylindrical coordinates has been solved to derive the expression of Surface Potential and threshold voltage of the device. A broken gap GaSb/InAs heterostructure has been considered in this work. Variation of potential profiles are shown with different gate and drain biases, by varying radius of the transistor,and different gate metals. Also, variation of threshold voltage is shown with respect to channel length and radius of the nanowire

    Mid-IR period-magnitude relations for AGB stars

    Full text link
    Asymptotic Giant Branch variables are found to obey period-luminosity relations in the mid-IR similar to those seen at K_S (2.14 microns), even at 24 microns where emission from circumstellar dust is expected to be dominant. Their loci in the M, logP diagrams are essentially the same for the LMC and for NGC6522 in spite of different ages and metallicities. There is no systematic trend of slope with wavelength. The offsets of the apparent magnitude vs. logP relations imply a difference between the two fields of 3.8 in distance modulus. The colours of the variables confirm that a principal period with log P > 1.75 is a necessary condition for detectable mass-loss. At the longest observed wavelength, 24 microns, many semi-regular variables have dust shells comparable in luminosity to those around Miras. There is a clear bifurcation in LMC colour-magnitude diagrams involving 24 micron magnitudes.Comment: 5 pages, 4 figure

    The Red Rectangle: Its Shaping Mechanism and its Source of Ultraviolet Photons

    Full text link
    The proto-planetary Red Rectangle nebula is powered by HD 44179, a spectroscopic binary (P = 318 d), in which a luminous post-AGB component is the primary source of both luminosity and current mass loss. Here, we present the results of a seven-year, eight-orbit spectroscopic monitoring program of HD 44179, designed to uncover new information about the source of the Lyman/far-ultraviolet continuum in the system as well as the driving mechanism for the bipolar outflow producing the current nebula. Our observations of the H-alpha line profile around the orbital phase of superior conjunction reveal the secondary component to be the origin of the fast (max. v~560kms km s^{-1})bipolaroutflowintheRedRectangle.ThevariationoftotalHalphafluxfromthecentralHIIregionwithorbitalphasealsoidentifiesthesecondaryoritssurroundingsasthesourceofthefarultravioletionizingradiationinthesystem.Theestimatedmassofthesecondary( 0.94M) bipolar outflow in the Red Rectangle. The variation of total H-alpha flux from the central H II region with orbital phase also identifies the secondary or its surroundings as the source of the far-ultraviolet ionizing radiation in the system. The estimated mass of the secondary (~0.94 M\sun)andthespeedoftheoutflowsuggestthatthiscomponentisamainsequencestarandnotawhitedwarf,aspreviouslysuggested.WeidentifythesourceoftheLyman/farultravioletcontinuuminthesystemasthehot,innerregion(T) and the speed of the outflow suggest that this component is a main sequence star and not a white dwarf, as previously suggested. We identify the source of the Lyman/far-ultraviolet continuum in the system as the hot, inner region (T_{max} \ge 17,000K)ofanaccretiondisksurroundingthesecondary,fedbyRochelobeoverflowfromthepostAGBprimaryatarateofabout K) of an accretion disk surrounding the secondary, fed by Roche lobe overflow from the post-AGB primary at a rate of about 2 - 5\times10^{-5}M M\sunyr yr^{-1}.Thetotalluminosityoftheaccretiondiskaroundthesecondaryisestimatedtobeatleast300L. The total luminosity of the accretion disk around the secondary is estimated to be at least 300 L\sun$, about 5% of the luminosity of the entire system. (abridged)Comment: Accepted for publication in Ap

    Two compact HII regions at the remote outskirts of the Magellanic Clouds

    Full text link
    The H II regions LMC N191 and SMC N77 are among the outermost massive star-forming regions in the Magellanic Clouds. So far, few works have dealt with these objects despite their interesting characteristics. We aim at studying various physical properties of these objects regarding their morphology (in the optical and Spitzer IRAC wavelengths), ionized gas emission, nebular chemical abundances, exciting sources, stellar content, age, presence or absence of young stellar objects, etc. This study is based mainly on optical ESO NTT observations, both imaging and spectroscopy, coupled with other archive data, notably Spitzer images (IRAC 3.6, 4.5, 5.8, and 8.0 microns) and 2MASS observations. We show the presence of two compact H II regions, a low-excitation blob (LEB) named LMC N191A and a high-excitation blob (HEB) named SMC N77A, and study their properties and those of their exciting massive stars as far as spectral type and mass are concerned. We also analyze the environmental stellar populations and determine their evolutionary stages. Based on Spitzer IRAC data, we characterize the YSO candidates detected in the direction of these regions. Massive star formation is going on in these young regions with protostars of mass about 10 and 20 M_sun in the process of formation.Comment: 14 pages, 8 figures, 6 tables; Accepted for publication in A&A. arXiv admin note: substantial text overlap with arXiv:1102.125

    Herschel Observations of a Newly Discovered UX Ori Star in the Large Magellanic Cloud

    Full text link
    The LMC star, SSTISAGE1C J050756.44-703453.9, was first noticed during a survey of EROS-2 lightcurves for stars with large irregular brightness variations typical of the R Coronae Borealis (RCB) class. However, the visible spectrum showing emission lines including the Balmer and Paschen series as well as many Fe II lines is emphatically not that of an RCB star. This star has all of the characteristics of a typical UX Ori star. It has a spectral type of approximately A2 and has excited an H II region in its vicinity. However, if it is an LMC member, then it is very luminous for a Herbig Ae/Be star. It shows irregular drops in brightness of up to 2 mag, and displays the reddening and "blueing" typical of this class of stars. Its spectrum, showing a combination of emission and absorption lines, is typical of a UX Ori star that is in a decline caused by obscuration from the circumstellar dust. SSTISAGE1C J050756.44-703453.9 has a strong IR excess and significant emission is present out to 500 micron. Monte Carlo radiative transfer modeling of the SED requires that SSTISAGE1C J050756.44-703453.9 has both a dusty disk as well as a large extended diffuse envelope to fit both the mid- and far-IR dust emission. This star is a new member of the UX Ori subclass of the Herbig Ae/Be stars and only the second such star to be discovered in the LMC.Comment: ApJ, in press. 9 pages, 5 figure

    Testing Mass Loss in Large Magellanic Cloud Cepheids using Infrared and Optical Observations II. Predictions and Tests of the OGLE-III Fundamental-Mode Cepheids

    Full text link
    In this article, we test the hypothesis that Cepheids have infrared excesses due to mass loss. We fit a model using the mass-loss rate and the stellar radius as free parameters to optical observations from the OGLE-III survey and infrared observations from the 2MASS and SAGE data sets. The sample of Cepheids have predicted minimum mass-loss rates ranging from zero to 108M10^{-8}M_\odot yr1yr^{-1}, where the rates depend on the chosen dust properties. We use the predicted radii to compute the Period-Radius relation for LMC Cepheids, and to estimate the uncertainty caused by the presence of infrared excess for determining angular diameters with the infrared surface brightness technique. Finally, we calculate the linear and non-linear Period-Luminosity (P-L) relations for the LMC Cepheids at VIJHK + IRAC wavelengths and we find that the P-L relations are consistent with being non-linear at infrared wavelengths, contrary to previous results.Comment: 17 pages, 12 figures, 5 tables, ApJ Accepte

    The Excitation of Extended Red Emission: New Constraints on its Carrier From HST Observations of NGC 7023

    Get PDF
    The carrier of the dust-associated photoluminescence process causing the extended red emission (ERE) in many dusty interstellar environments remains unidentified. Several competing models are more or less able to match the observed broad, unstructured ERE band. We now constrain the character of the ERE carrier further by determining the wavelengths of the radiation that initiates the ERE. Using the imaging capabilities of the Hubble Space Telescope, we have resolved the width of narrow ERE filaments appearing on the surfaces of externally illuminated molecular clouds in the bright reflection nebula NGC 7023 and compared them with the depth of penetration of radiation of known wavelengths into the same cloud surfaces. We identify photons with wavelengths shortward of 118 nm as the source of ERE initiation, not to be confused with ERE excitation, however. There are strong indications from the well-studied ERE in the Red Rectangle nebula and in the high-|b| Galactic cirrus that the photon flux with wavelengths shortward of 118 nm is too small to actually excite the observed ERE, even with 100% quantum efficiency. We conclude, therefore, that ERE excitation results from a two-step process. While none of the previously proposed ERE models can match these new constraints, we note that under interstellar conditions most polycyclic aromatic hydrocarbon (PAH) molecules are ionized to the di-cation stage by photons with E > 10.5 eV and that the electronic energy level structure of PAH di-cations is consistent with fluorescence in the wavelength band of the ERE. Therefore, PAH di-cations deserve further study as potential carriers of the ERE. (abridged)Comment: Accepted for Publication in the Ap

    The Dust in Lyman Break Galaxies

    Full text link
    We present our analysis of UV attenuation by internal dust of a large sample (N=906 galaxies) of Lyman Break Galaxies (LBGs). Using spectral energy distributions (SEDs) from the P\'EGASE galaxy spectral evolution model we apply dust attenuation corrections to the G-R colors using the Witt & Gordon (2000) models for radiative transfer in dusty galactic environments to arrive at the UV attenuation factors. We show that the dust in the LBGs exhibit SMC-like characteristics rather than MW-like, and that the dust geometry in these systems is most likely to be represented by a clumpy shell configuration. We show that the attenuation factor exhibits a pronounced dependence on the luminosity of the LBG, a_{1600}\propto (L/L_\sun)^\alpha, where 0.5α1.50.5\leq\alpha\leq1.5. The exponent α\alpha depends on the initial parameters of the stellar population chosen to model the galaxies and the dust properties. We find that the luminosity weighted average attenuation factor is likely to be in the range from 5.718.55.7-18.5, which is consistent with the upper limits to the star formation rate at 2<z<42<z<4 set by the FIR background. This implies that the current UV/optical surveys do detect the bulk of the star formation during the epoch 2<z<42<z<4, but require substantial correction for internal dust attenuation.Comment: 17 pages, 12 figures, uses AASTEX, accepted for publication in the Astrophysical Journa

    The Dust-to-Gas Ratio in the Small Magellanic Cloud Tail

    Get PDF
    The Tail region of the Small Magellanic Cloud (SMC) was imaged using the MIPS instrument on the Spitzer Space Telescope as part of the SAGE-SMC Spitzer Legacy. Diffuse infrared emission from dust was detected in all the MIPS bands. The Tail gas-to-dust ratio was measured to be 1200 +/- 350 using the MIPS observations combined with existing IRAS and HI observations. This gas-to-dust ratio is higher than the expected 500-800 from the known Tail metallicity indicating possible destruction of dust grains. Two cluster regions in the Tail were resolved into multiple sources in the MIPS observations and local gas-to-dust ratios were measured to be ~440 and ~250 suggests dust formation and/or significant amounts of ionized gas in these regions. These results support the interpretation that the SMC Tail is a tidal tail recently stripped from the SMC that includes gas, dust, and young stars.Comment: 6 pages, 3 figures, ApJ Letters, in press, (version with full resolution figures at http://www.stsci.edu/~kgordon/papers/PS_files/sage-smc_taildust_v1.62.pdf
    corecore