41 research outputs found

    Responses of the atmospheric concentration of radon-222 to the vertical mixing and spatial transportation

    Get PDF
    Radon-222 (Rn-222) has traditionally been used as an atmospheric tracer for studying air masses and planetary boundary-layer evolution. However, there are various factors that influence its atmospheric concentration. Therefore, we investigated the variability of the atmospheric radon concentration in response to the vertical air mixing and spatial transport in a boreal forest environment in northern Europe. Long-term Rn-222 data collected at the SMEAR II station in southern Finland during 2000-2006 were analysed along with meteorological data, mixing layer height retrievals and air-mass back trajectory information. The daily mean atmospheric radon concentration followed a log-normal distribution within the range <0.1-11 Bq m(-3), with the geometric mean of 2.5 Bq m(-3) and a geometric standard deviation of 1.7 Bq m(3). In spring, summer, autumn and winter, the daily mean concentrations were 1.7, 2.7, 2.8 and 2.7 Bq m(-3), respectively. The low, spring radon concentration was especially attributed to the joint effect of enhanced vertical mixing due to the increasing solar irradiance and inhibited local emissions due to snow thawing. The lowest atmospheric radon concentration was observed with northwesterly winds and high radon concentrations with southeasterly winds, which were associated with the marine and continental origins of air masses, respectively. The atmospheric radon concentration was in general inversely proportional to the mixing layer height. However, the ambient temperature and small-scale turbulent mixing were observed to disturb this relationship. The evolution of turbulence within the mixing layer was expected to be a key explanation for the delay in the response of the atmospheric radon concentration to the changes in the mixing layer thickness. Radon is a valuable naturally-occurring tracer for studying boundary layer mixing processes and transport patterns, especially when the mixing layer is fully developed. However, complementing information, provided by understanding the variability of the atmospheric radon concentration, is of high necessity to be taken into consideration for realistically interpreting the evolution of air masses or planetary boundary layer.Peer reviewe

    Accurate measurements of CO2 mole fraction in the atmospheric surface layer by an affordable instrumentation

    Get PDF
    We aimed to assess the feasibility of an affordable instrumentation, based on a non-dispersive infrared analyser, to obtain atmospheric CO2 mole fraction data for background CO2 measurements from a flux tower site in southern Finland. The measurement period was November 2006 to December 2011. We describe the instrumentation, calibration, measurements and data processing and a comparison between two analysers, inter-comparisons with a flask sampling system and with reference gas cylinders and a comparison with an independent inversion model. The obtained accuracy was better than 0.5 ppm. The inter-comparisons showed discrepancies ranging from -0.3 ppm to 0.06 ppm between the measured and reference data. The comparison between the analyzers showed a 0.1 +/- 0.4 ppm difference. The trend and phase of the measured and simulated data agreed generally well and the bias of the simulation was 0.2 +/- 3.3 ppm. The study highlighted the importance of quantifying all sources of measurement uncertainty

    Conceptual design of a measurement network of the global change

    Get PDF
    The global environment is changing rapidly due to anthropogenic emissions and actions. Such activities modify aerosol and greenhouse gas concentrations in the atmosphere, leading to regional and global climate change and affecting, e.g., food and fresh-water security, sustainable use of natural resources and even demography. Here we present a conceptual design of a global, hierarchical observation network that can provide tools and increased understanding to tackle the inter-connected environmental and societal challenges that we will face in the coming decades. The philosophy behind the conceptual design relies on physical conservation laws of mass, energy and momentum, as well as on concentration gradients that act as driving forces for the atmosphere-biosphere exchange. The network is composed of standard, flux and/or advanced and flagship stations, each of which having specific and identified tasks. Each ecosystem type on the globe has its own characteristic features that have to be taken into consideration. The hierarchical network as a whole is able to tackle problems related to large spatial scales, heterogeneity of ecosystems and their complexity. The most comprehensive observations are envisioned to occur in flagship stations, with which the process-level understanding can be expanded to continental and global scales together with advanced data analysis, Earth system modelling and satellite remote sensing. The denser network of the flux and standard stations allows application and up-scaling of the results obtained from flagship stations to the global level.Peer reviewe
    corecore