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Radon-222 (222Rn) has traditionally been used as an atmospheric tracer for studying air 
masses and planetary boundary-layer evolution. However, there are various factors that 
influence its atmospheric concentration. Therefore, we investigated the variability of the 
atmospheric radon concentration in response to the vertical air mixing and spatial trans-
port in a boreal forest environment in northern Europe. Long-term 222Rn data collected at 
the SMEAR II station in southern Finland during 2000–2006 were analysed along with 
meteorological data, mixing layer height retrievals and air-mass back trajectory informa-
tion. The daily mean atmospheric radon concentration followed a log-normal distribution 
within the range < 0.1–11 Bq m–3, with the geometric mean of 2.5 Bq m–3 and a geometric 
standard deviation of 1.7 Bq m–3. In spring, summer, autumn and winter, the daily mean 
concentrations were 1.7, 2.7, 2.8 and 2.7 Bq m–3, respectively. The low, spring radon con-
centration was especially attributed to the joint effect of enhanced vertical mixing due to 
the increasing solar irradiance and inhibited local emissions due to snow thawing. The 
lowest atmospheric radon concentration was observed with northwesterly winds and high 
radon concentrations with southeasterly winds, which were associated with the marine and 
continental origins of air masses, respectively. The atmospheric radon concentration was in 
general inversely proportional to the mixing layer height. However, the ambient tempera-
ture and small-scale turbulent mixing were observed to disturb this relationship. The evo-
lution of turbulence within the mixing layer was expected to be a key explanation for the 
delay in the response of the atmospheric radon concentration to the changes in the mixing 
layer thickness. Radon is a valuable naturally-occurring tracer for studying boundary layer 
mixing processes and transport patterns, especially when the mixing layer is fully devel-
oped. However, complementing information, provided by understanding the variability of 
the atmospheric radon concentration, is of high necessity to be taken into consideration for 
realistically interpreting the evolution of air masses or planetary boundary layer.
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Introduction

Radon-222 (222Rn) is a radioactive noble gas with 
a half-life of about 3.8 days, which is naturally 
exhaled from soil into the atmosphere (e.g. Pal 
et al. 2015). It originates from the spontaneous 
decay series of 238U in the Earth’s crust. Owing 
to the long half-life, monatomic radon gas can 
migrate through the soil and enter the atmosphere 
before lost in the radioactive decay. The con-
centration of radon in the atmosphere is directly 
related to the exhalation rate of radon from soils 
(Escobar et al. 1999). This exhalation process is 
affected by several factors, including the concen-
tration of its parent nuclide (radium-226), inter-
nal structure of radium-containing mineral grain, 
soil type, moisture and temperature; and also 
the changing ambient air pressure has influences 
on the exhalation rate (Clements and Wilkening 
1974, Stranden et al. 1984, Schery 1989, Mark-
kanen and Arvela 1992, Nazaroff 1992, Ashok et 
al. 2011). Typically, radon is formed from radium 
decay inside the mineral grains of soil, and there-
fore, it has to first escape into pores in between 
the grains before being transported to the atmos-
phere by diffusion and convection (Porstendörfer 
1994). The transport mechanisms of radon from 
soil to the atmosphere have been elucidated by 
Nazaroff (1992).

The dynamics of the planetary boundary 
layer (PBL) has crucial effects on the surface-
atmosphere exchanges of energy, moisture, 
momentum and pollutants (Seidel et al. 2010, 
Behrendt et al. 2011, Pal and Devara 2012, 
Lac et al. 2013, McGrath-Spangler and Den-
ning 2013, Lee et al. 2015). Therefore, the 
atmospheric concentration of radon is inevita-
bly dependent on the vertical mixing through 
transport and changes in a dispersion volume 
in the PBL. According to Stull (1998), the PBL 
has a well-defined structure in high-pressure 
regions over land, which evolves with time: a 
very turbulent daytime mixed layer dies out after 
sunset, forming a residual layer and a relatively 
stable nocturnal boundary layer. Mixing due to 
turbulence can, to some extent, take place in the 
nocturnal boundary layer (Stull 1998). There is 
an increasing number of observational studies 
showing that boundary layer mixing can have 
distinct characteristics in different environments 

(e.g. Barlow et al. 2011, Schween et al. 2014, 
Vakkari et al. 2015). Accordingly, a mixing layer 
(ML) is preferably used to denote the layer with 
complete or incomplete mixing process in the 
PBL (Beyrich 1997, Seibert et al. 1999).

Owing to the facts that radon is chemi-
cally inert and its removal from the atmos-
phere depends only on the radioactive decay 
process, radon has long been regarded as a 
useful tracer in studying the vertical mixing in 
the ML (Jacobi and André 1963, Guedalia et 
al. 1980, Kritz 1983, Sesana et al. 2003, Grossi 
et al. 2012, Pal 2014). Pal et al. (2015) stud-
ied the variability of the atmospheric boundary 
layer using radon and recently Griffiths et al. 
(2013) reported the use of radon data to improve 
the determination of the ML height from lidar 
backscatter profiles. Radon is also the favoured 
choice for testing and developing climate and 
chemical transport models (Jocab and Prather 
1990, Forster et al. 2007, Zhang et al. 2008), as 
reviewed by Zahorowski et al. (2004). Several 
applications involving radon as the atmospheric 
tracer have also been summarised by Williams et 
al. (2011). However, these studies were mostly 
based on relatively short-term study periods var-
ying from a few weeks to a year, and therefore, 
they lack long-term statistical reliability on the 
diurnal and seasonal variability of the atmos-
pheric radon concentration in responses to verti-
cal and spatial mixings. If a biased observation 
on the intrinsic features in the variability of the 
atmospheric radon concentration were made, the 
scarcity would probably be propagated into the 
subsequent applications. Hence, data sets based 
on long-term comprehensive measurements are 
essential.

In this paper, we analysed the variability of 
the atmospheric radon concentration in response 
to the vertical mixing and spatial transport of 
air at the SMEAR II station (61°51´N, 24°17´E, 
181 m a.s.l.) in a boreal forest environment at 
Hyytiälä of southern Finland (see Hari and Kul-
mala 2005). The investigation was based on data 
sets of radon and meteorological variables col-
lected during 2000–2006. Mixing-layer height 
estimates and back-trajectory calculations were 
used to assist the interpretation of the ambient 
data. The main goal of this study was, by using 
long-term data sets with aids of meteorological 
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data, modelled mixing layer height and trajec-
tory statistics, to elucidate how the mixing layer 
development and air mass motions affect the 
observed variability in the atmospheric radon 
concentration in the boreal forest environment of 
northern Europe.

Material and methods

The radon measurement at the SMEAR II sta-
tion was deployed by the Finnish Meteorologi-
cal Institute (FMI) and has been integrated into 
the long-term measurement system of the sta-
tion. The atmospheric concentration of 222Rn was 
resolved from the measurement of beta activ-
ity on atmospheric aerosol particles by a radon 
monitor. The meteorological data on wind and air 
temperature were obtained from mast measure-
ments. The mast at the SMEAR II station had a 
height of 73 m, and continuous measurements 
during 2000–2006 were carried out at seven 
heights. The mast was later extended to 127 m 
and three more measurement heights were added. 
The air temperature data were taken from 4.2 m 
and 67.2 m, and the data on wind speed and wind 
direction from 8.4 m of the mast measurements. 
For a thorough investigation of the relation 
between the variations in the atmospheric radon 
concentration and vertical and spatial mixing, 
also the mixing layer (ML) height obtained from 
the European Centre for Medium-Range Weather 
Forecasts (ECMWF) Meteorological Archival 
and Retrieval System (MARS) and trajectory 
information calculated from the FLEXible TRA-
jectories (FLEXTRA) model (Stohl et al. 1995) 
were analysed in this work. The data are pre-
sented for UTC + 2.

Radon measurement

The radon measurements were carried out by a 
filter-based radon monitor and the design details 
of the instrument are described in Paatero et 
al. (1994). Here, we briefly present the meas-
urement procedures and focus on resolving 
the atmospheric concentration of 222Rn from 
recorded count rates. The inlet of this monitor 
is kept at 6 m above the ground. The device 

comprises primarily a pair of cylindrical Geiger-
Müller counters housed in lead shields for beta 
particle detection and a mass flow meter for 
measuring the air stream. Both counters have 
an effective time of 4 h for sample collec-
tion, and while one of the counters is sampling, 
the other one is closed for the radioactivity on 
the filter to decay. The airflow contains aerosol 
particles carrying daughter nuclides of radon. 
While passing through the device, these aerosol 
particles are collected on the filter wrapping the 
effective counter. The beta particles released 
from them are registered cumulatively in 10-min 
intervals. For the geometric configuration of this 
device, counting efficiencies of 0.96% and 4.3% 
are achieved for beta emissions from 214Pb and 
214Bi, respectively. A rough estimation of the 1-σ 
counting statistics is ±20% for a presumed stable 
222Rn concentration of 1 Bq m–3.

A full cycle of each counter takes 8 h before 
being effective for the next collection period. 
Ideally, counts in either counter drop to the base 
level at the end of the 8-h period, provided that 
the activity comes solely from the short-lived 
radon progeny, i.e. daughter nuclides of 222Rn. 
In practice, however, long-lived radioactivity 
in the air may affect measurements. This long-
lived radioactivity is comprised mainly of 220Rn 
progeny and, to a lesser extent, of artificial 
radionuclides (for example, 137Cs from nuclear 
tests and accidents, e.g. Chernobyl). The long-
lived radioactivity can elevate the base level for 
the next collection period. These contributions 
were excluded in this study by subtracting the 
base level from the beta activity registered in 
the concerned collection period. If the back-
ground activity at the beginning of an 8-h cycle 
was lower than that at the end of this cycle, it 
indicates that the long-lived radioactivity came 
from the first 4-h collection period during this 
cycle. The base level was, therefore, determined 
by a linear interpolation between the activities 
recorded at the beginning and at the end of an 
8-h cycle for 4 h. Otherwise, the base level was 
obtained from a linear interpolation over 8 h.

The atmospheric concentration of 222Rn can 
be approximated by the concentration (C) of 
218Po in the atmosphere, which is resolvable from 
the registered activity according to the following 
equation (Paatero et al. 1994):
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 . (1)

Here, it is assumed that the recorded radioactivity 
originates only from the decay of 222Rn and the 
first three daughter nuclides of radon (218Po, 214Pb 
and 214Bi) have an equal concentration. Based 
on the studies carried out in Helsinki, Matts-
son (1984) reported that 218Po, 214Pb and 214Bi 
remained mostly in equilibrium with unity ratio 
among them, regardless of weather conditions. 
No significant sources of artificial radioactivity 
existed during the study period. Consequently, 
artificial radioactive sources could be neglected, 
and the recorded radioactivity could be attrib-
uted to the decay of 222Rn only. In Eq. 1, R is 
the newly-collected activity during 10 minutes 
corrected for the left-over activity present on 
the filter, V is the volumetric flow rate of the air 
stream passing through the filter, λ is the decay 
constant with subscripts 1 to 3 referring to 218Po, 
214Pb and 214Bi, and ε1 and ε2 are the counting 
efficiencies of the beta particles emitted in the 
decay processes of 214Pb and 214Bi, respectively. 
The term Si was derived from Bateman equations 
(Bateman 1910) which quantify the abundances 
of nuclides in the decay chain and take the fol-
lowing forms:

 , (2)

 , (3)

 , (4)

 , (5)

 . (6)

Meteorological measurements

The ambient air temperature (T ) used in this 
study was measured at 4.2 m and 67.2 m. It was 

measured with PT-100 sensors mounted on the 
mast. These sensors were protected from solar 
radiation and ventilated by fans. Based on the 
comparison with a reference mercury thermom-
eter, the bias of these measurements was within 
±0.2 °C.

Before 4 September 2003, the wind speed 
(WS) at the 8.4-m height was measured with 
a cup anemometer (A101M/L, Vector Instru-
ments, Rhyl, Clwyd, UK; threshold 0.15 m s–1), 
and as of 5 September 2003, with an ultrasonic 
anemometer (Ultrasonic anemometer 2D, Adolf 
Thies GmbH, Göttingen, Germany; accuracy 
±1 m s–1). The information on the wind direction 
(WD) at this height was also obtained with the 
ultrasonic anemometer (accuracy ±1°).

Mixing layer (ML) height model

The ML height estimates were obtained from the 
European Centre for Medium-Range Weather 
Forecasts (ECMWF, www.ecmwf.int) Meteoro-
logical Archival and Retrieval System (MARS). 
The boundary Layer Height (BLH) parameter 
(i.e. ML) was retrieved from the operative fore-
cast model in use at the time (http://www.ecmwf.
int/en/forecasts/documentation-and-support/
changes-ecmwf-model). Determination of the 
BLH in the model is based on the parcel-lifting 
method: the parcel is lifted from the surface 
layer up to the level where a critical bulk Rich-
ardson number is reached (ECMWF 2001). Even 
though the mixing layer heights retrieved from 
the forecast data are only approximations, they 
have been shown to represent the diurnal and 
seasonal cycles of the ML height reasonably well 
(Seidel et al. 2012). ML heights can be derived 
from various measurements (e.g. Cimini et al. 
2013, Pal 2014, Schween et al. 2014, Vakkari 
et al. 2015). Korhonen et al. (2014) compared 
three data sets of modelled ML heights for a 
South African site derived from different models 
with ML heights calculated from radiosonde and 
lidar backscatter measurements and found the 
best agreement for the ECMWF model with the 
lidar measurement, showing only a mean relative 
difference of 15.4%. Kouznetsov et al. (2012) 
did similar comparisons for Helsinki, Finland 
between modelled ML heights and Sodar data. 
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Although the ECMFW ML heights did not show 
the best agreement with the measurement among 
tested models, the measured and ECMWF ML 
heights were found comparable.

FLEXTRA trajectory and data analysis

Air mass back trajectories arriving at Hyyt-
iälä on the 950-hPa pressure level were calcu-
lated with the FLEXTRA kinematic trajectory 
model (ver. 3.3) (Stohl et al. 1995). For this 
study, 120-h back trajectories were calculated 
in 3-h intervals. Analysed meteorological fields 
from the European Centre for Medium-Range 
Weather Forecasts (ECMWF) numerical weather 
forecast model were used as a model input.

The trajectory data were analysed based on 
the method proposed by Riuttanen et al. (2013), 
which takes into account the horizontal uncer-
tainties associated with the atmospheric trans-
port model used for generating the air mass 
trajectories. By comparing the distance between 
receptor cells and calculated trajectory with the 
distance being travelled along the trajectory to 
the measurement site, weighing factors were 
assigned to the receptor cells. According to Stohl 
and Seibert (1998), the horizontal uncertainty 
in the trajectory calculated from the FLEXTRA 
model, with the analysed meteorological field 
input from the ECMWF numerical weather fore-
cast model, is less than 20% of the travel dis-
tance after 120-h travel time. Similar horizontal 
bias has also been reported for the computed 
trajectories when compared with manned bal-
loon tracks (Baumann and Stohl 1997). Accord-
ingly, if an adjacent cell (cell 1 in Fig. 1) fell in 
between 10% and 20% of the travelling distance 
by the trajectory (d ) before reaching the SMEAR 
II station, it was given a weighing factor of 0.3 
(‘near’ case), and if the distance between the cell 
(cell 2) and the trajectory was shorter than d2, it 
received a weighing factor of 0.7 (‘close’ case). 
Cells outside the 20% boundary were assumed to 
receive no influence from the contents carried by 
the air mass travelling along the trajectory.

Because the resolved radon concentration 
was log-normally distributed (Fig. 2), the geo-
metric mean value of the weighed concentrations 
accumulated in each cell was used to construct 

the concentration field following Eq. 7, which 
was then normalised by the median values of the 
data set in this study to generate a relative con-
centration field.

, (7)

where, i and j are the indices for the geographi-
cal coordinates of a receptor cell, n is the index 
of the trajectory, and w represents the weighing 
factor, with k and l indicting the ‘close’ and 
‘near’ cases, respectively. According to Riut-
tanen et al. (2013), Eq. 7 is applicable only when 
the number of trajectory hits within each cell 
grid is greater than 10.

Mass balance analysis of the evolution 
of radon concentration with time and ML 
height

A mass balance approach, based on the Eulerian 
box model (Seinfeld and Pandis 2006), can be 
written to depict the temporal evolution of the 
atmospheric radon concentration with time by 
presuming that an equilibrium state is always 
established in the ML right after any change in 

cell 1

cell 2

d

d1 d2

SMEAR II

Fig. 1. A schematic demonstration of the trajectory 
analysis. Here d1 = 0.2 ¥ d and d2 = 0.1 ¥ d, where d 
represents the distance being travelled by the trajectory 
before reaching the SMEAR II station.
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the system. The atmospheric radon concentra-
tion in this equilibrium state is expressed as Ceq. 
Furthermore, the distribution of radon in the ML 
is assumed to be homogeneous and therefore 
Ceq equals to the concentration derived from the 
measurement.

When the studied column is narrow enough, 
the horizontal transport of radon into the con-
cerned volume can be roughly cancelled by the 
out-going fraction carried out by air masses 
from the volume. When averages of long-term 
data are considered, the effect of the horizontal 
transport on the column concentration can also 
be neglected, because the motion of air masses is 
not restricted into a single direction.

The primary source of radon is due to exhala-
tion. Radon typically vanishes within the volume 
by spontaneous decay. The application of a mass 
balance approach is straightforward when this 
volume is constant. In the atmosphere, the ML 
depth changes with time, typically being low 
during night and early morning hours followed 
by a growth after sunrise with the maximum 
reached in the afternoon (e.g. Schween et al. 
2014, Pal et al. 2015). When the ML expands, 
air above the ML containing radon gas (with 
concentration marked as C0) gets mixed into the 
volume, which dilutes the radon content in it, yet 
being an additional source of radon. C0, how-
ever, becomes equal to Ceq, once the maximum 
mixing depth is reached. As a result, the balance 
equation can be written as:

 dCeq/dt = Exhalation + Dilutiuon + Decay, (8)

where the exhalation term can be expressed as 
the exhalation rate (ExR) over the ML height 
(H), ExR/H. By assuming that the radon con-
centration in the ML is in equilibrium, the decay 
term can be written as

 dCeq/dtDecay = –λCeq, (9)

where λ is the decay constant of 222Rn. The dilu-
tion term has two different forms depending on 
the dynamics of the ML: for ML expansion,

 , (10)

and for ML shrinking, as C0 = Ceq,

 dCeq/dtDilution = 0. (11)

According to Eq. 10, the change rate of radon 
concentration is related to the expansion rate of 
the ML. This relationship has been illustrated by 
Pal et al. (2015), showing that the faster the ML 
grows, the faster radon concentration decreases.

Results and discussion

General patterns in the atmospheric 
radon concentration

At the SMEAR II station, daily mean atmos-
pheric concentrations of 222Rn ranged between 
< 0.1 and 11 Bq m–3 (the lower end of this range 
is restricted by the detection limit of the radon 
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monitor) during the years 2000–2006. They fol-
lowed a log-normal distribution with a geometric 
mean of 2.5 Bq m–3 and a geometric standard 
deviation of 1.7 Bq m–3 (Fig. 2). The geometric 
mean of the daily mean radon concentration in 
each year fell in between 2.3 and 2.6 Bq m–3, 
implying little inter-annual variability. A similar 
distribution pattern was also observed in daily 
medians of radon concentration, the geometric 
mean of which, however, got a slightly smaller 

value of 2.3 Bq m–3 with a geometric standard 
deviation of 1.8 Bq m–3.

For the years 2000–2006, both the hourly 
medians for monthly periods and the daily medi-
ans on the day-of-year basis of the atmospheric 
radon concentration varied roughly between 1 
and 5 Bq m–3 (Figs. 3 and 4). Similar to obser-
vations by Pal et al. (2015) in central Europe, 
a clear diurnal cycle in the atmospheric radon 
concentration, with a maximum in the early 
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Fig. 3. Patterns in the 
hourly-median atmos-
pheric radon concentration 
(CRn) in different months in 
2000–2006. First, hourly 
medians were calculated 
for the whole measure-
ment period from the 
10-minute measurement 
data. From these data, 
median values for each 
month as a vector of hour 
of the day were then cal-
culated.
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the years 2000–2006. First, hourly medians were calculated for the whole measurement period from the 10-minute 
measurement data. From these data, a median value for each day of the year was calculated.
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morning and minimum in the afternoon, was 
found for March–October. During these months, 
the average length of a period within a day 
with a low atmospheric radon concentration first 
increased until the end of May, after which an 
opposite behaviour was seen until September. 
During the other months, the atmospheric radon 
concentration showed little diurnal variation. 
The high radon concentration observed between 
midnight and 9:00 (UTC + 2) in the morning in 
late summer can be ascribed to the increase in 
local emission due to the optimal combination 
of the temperature and soil moisture condition 
for radon exhalation, together with the frequent 
occurrence of nocturnal inversion.

As for the seasonal cycle (Fig. 4), a relatively 
high median radon concentration was found in 
winter. A decline in the daily median radon con-
centration during the spring lasted until April. 
Thereafter, a recovery of concentration prevailed 
during the summer. The median radon concen-
tration fluctuated around a relatively high level 
throughout the rest of the year, even though a 
slight decrease was seen in autumn. This obser-
vation is comparable to the pattern shown by 
Mattsson (1970), who also reported that 214Bi, the 
short-lived progeny of 222Rn, possessed a con-
centration in the range of about 25–125 pCi m–3 
(1–5 Bq m–3) in Finland. A joint effect of soil 
moisture and mixing layer development, which 
will be discussed later in the text, resulted in the 

minimum median radon concentration observed 
in April. The high atmospheric concentration of 
radon in autumn and winter was typically related 
to the persistent surface inversion.

Clear diurnal cycles in the median radon 
concentration based on the 10-min data were 
identifiable in all seasons, with the exception 
of winter (Fig. 5a). The largest amplitude in the 
diurnal variation was observed in the summer 
(June–August), with the maximum median radon 
concentration at around 06:00 and minimum at 
around 16:00. Comparable daily mean atmos-
pheric concentrations of 222Rn were observed 
in summer (2.7 Bq m–3), autumn (September–
November, 2.8 Bq m–3) and winter (December–
February, 2.7 Bq m–3), whereas the concentra-
tion was clearly lower in spring (March–May, 
1.7 Bq m–3). Our findings are similar to the 
results obtained for a French site (Pal et al. 
2015), where, however, no obvious low radon 
concentration was observed in spring and more 
pronounced diurnal variation was observed in 
autumn as compared with the patterns in other 
seasons.

Vertical mixing, horizontal transportation 
and local emissions affect atmospheric radon 
concentration. In summer, autumn and winter, 
the dilution due to vertical mixing, contribution 
from horizontal transportation and changes in 
local emissions were assumed to maintain the 
atmospheric radon concentration around a rela-
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tive stable median level (Fig. 5a). However, the 
dilution effect of vertical mixing and the reduc-
tion in local radon exhalation due to water block-
age from snow thawing are especially prominent 
in spring, consequently leading to a remarkably 
low atmospheric concentration of radon..

The response of the atmospheric radon 
concentration to the development of ML

The seasonal and diurnal variations in the atmos-
pheric radon concentration were linked to the 
vertical mixing in the atmosphere. The mixing 
layer (ML) was typically the deepest in the 
afternoon at around 14:00 (Fig. 5b), which cor-
responded to the time of observation of low 
radon concentration (Fig. 5a). The magnitude of 
the diurnal variation in the atmospheric radon 
concentration was connected to the develop-
ment of the ML: the deeper the ML expanded, 
the more pronounced diurnal cycles in the radon 
concentration were observed. Along with an air 
temperature increase, the median radon concen-
tration first decreased almost linearly in response 
to the expansion of the ML up to a median height 
of 1500 m (Fig. 6a). With further warming, 
however, the concentration levelled at around 1 
Bq m–3, when the median modelled ML height 
resided between 1500 and 2500 m. This observa-

tion indicates that there was enrichment in the 
atmospheric radon concentration in relation to 
the high air temperature, which overcame the 
dilution due to the thickening of the ML. The 
increase in the atmospheric radon concentration 
can be attributed to both local sources and trans-
port. Owing to its 3.8-day half-life, transporta-
tion of 222Rn in the atmosphere is possible over 
considerable distances.

The local radon source is primarily depend-
ent on the availability of radon gas in the soil, 
which is determined by the emanation rate. In 
addition, it is also determined by the exhalation 
of the radon gas from soil, which weakly depends 
on the temperature (Stranden et al. 1984). Naz-
aroff (1992) elucidated that once radon atoms get 
released to soil pores from soil grains, they can 
be in three different phases: the sorbed phase on 
soil grain, gaseous phase and aqueous phase. The 
sorption process, while abated by a temperature 
increase, is less relevant in ambient conditions 
owing to the involvement of moisture (Stranden 
et al. 1984, Nazaroff 1992). However, the tem-
perature affects the partitioning between the other 
two phases, because radon is weakly soluble in 
water and its solubility decreases with an increas-
ing temperature (Lewis et al. 1987). Furthermore, 
the transport of radon from soil pores to the 
atmosphere is governed by another temperature-
dependent process, diffusion, under ambient con-

Fig. 6. The atmospheric radon concentration (CRn) during 2003–2006 as a function of (a) the modelled mixing layer 
height and (b) air temperature (TAir). The colour scale indicates air temperature measured at the 4.2 m height. In a, 
median radon concentrations were calculated from all the data in binned mixing layer heights with a coequal inter-
val of 50 m. In b, hourly median radon concentrations within the mixing layer height range of 1500–2500 m were 
taken into account. Median radon concentrations in 5 °C intervals in the selected mixing layer range were plotted 
in red.
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ditions (Nazaroff 1992). Accordingly, an increase 
in the air temperature heats the surface layer of 
the soil, which subsequently contributes to the 
growth in atmospheric radon concentration by 
reducing the solubility of radon in moisture con-
tained in soil pores and enhancing the diffusion 
of the radon gas through the soil.

Compared with the temperature, the moisture 
has been shown to have a stronger influence on 
radon exhalation (Stranden et al. 1984, Nazaroff 
1992). Typically the moisture plays opposite 
roles in affecting radon emanation and diffusion. 
The moisture reduces significantly the diffusion 
coefficient of radon in soil (Nazaroff 1992), 
whereas it enhances the emanation of radon from 
soil grains to soil pores (Markkanen and Arvela 
1992), possibly due to the lower recoil range of 
radon in water than that in air (Nazaroff 1992). 
The overall effect of these two processes is that 
the maximum exhalation rate of radon appears at 
an optimal moisture concentration depending on 
the soil type, as shown by Stranden et al. (1984). 
The high soil moisture content during the snow-
thawing period hindered radon exhalation, which 
contributed to the occurrence of the minimum 
radon concentration in April (Figs. 3–4). Yet, an 
over-dry condition brings no incentive either. 
Therefore, the ground-water level has been 
coherently found as an indicator of radon exhala-
tion (Mattsson 1970). During warm periods, the 
surface air dries up the topsoil, which favours the 
diffusive transport of radon through the ground 
surface to the atmosphere, yet possibly without 
disrupting the radon emanation from ores con-
taining the parent nuclides of radon. As a con-
sequence, the plateau in Fig. 6a was most likely 
caused, in addition to the transported source, 
by the combination of the opposite effects of 
enhanced radon exhalation from soil and vertical 
dilution in the atmosphere. This means that the 
effect of the intensified radon exhalation result-
ing from increasing air temperature was coun-
terbalanced by the enhanced dilution as the ML 
height grew from 1500 m to 2500 m (Fig. 6a). In 
support of this, an exponential relationship was 
identified between air temperature and atmos-
pheric radon concentration within the ML height 
range between 1500 and 2500 m based on hourly 
data (Fig. 6b). Such an increase in the atmos-
pheric radon concentration with an increasing 

air temperature was also evident beyond this ML 
range, when air temperature was above 5 °C.

For the ML height higher than about 2500 m, 
the median radon concentration tended to 
decrease further with an increasing ML height, 
and the median air temperature dropped from 
about 15 °C to slightly below 10 °C (Fig. 6a). 
Days with such a thick ML and moderate air 
temperature occurred typically in late spring and 
early summer.

We observed clear diurnal patterns in the 
median radon concentration as a function of the 
temperature difference between the 67.2 m and 
4.2 m heights in spring, summer and autumn 
(Fig. 7). Apart from the winter season, a stable 
layer near the surface with a positive temperature 
difference (inversion) was observed during the 
night, which lasted the longest in summer, fol-
lowed by spring and autumn. The positive tem-
perature difference was prominent in winter, yet 
no clear pattern in the evolution of this param-
eter with time could be identified in relation to 
the atmospheric radon concentration during this 
season. During other seasons, the median radon 
concentration increased over the night when the 
positive temperature inversion prevailed, and 
ultimately led to the maximum median radon 
concentration at around 06:00 in the morning 
(Fig. 5a). Hereafter, the enhanced vertical mixing 
due to expanding ML after sunrise diminished 
the temperature inversion. Eventually, a reduc-
tion in the median radon concentration occurred 
in the unstable atmosphere when the dilution 
became predominant on average. This process 
was intensified along with the further develop-
ment of the ML until the maximum depth was 
reached at around 14:00, when the median radon 
concentration nearly dropped to its minimum. 
Thereafter, especially in summer and autumn 
following some latency, a slow increase in the 
median radon concentration emerged along with 
the gradual shrinkage of the ML.

The effect of wind on the atmospheric 
radon concentration

Wind affects the observed variability in the con-
centrations of trace components in the atmos-
phere (e.g. Pal et al. 2014). High median wind 
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speeds were typically seen at around midday, 
which corresponded to the full development of 
the ML in an unstable atmosphere (Fig. 8). The 
low-wind-speed condition was, however, associ-
ated with a shallow ML and stable atmosphere 
in the evening. These features, however, were 
unidentifiable in the wintertime. Nonetheless, an 
inverse relationship with a linear proportionality 
was found between the wind-speed bins with 
coequal interval of 0.5 m s–1 and the correspond-
ing median radon concentration in these bins 
(Fig. 9).

The ML started to shrink after reaching the 
maximum height at about 14:00 (Fig. 5b), after 
which the atmospheric radon concentration 
recovered with some time lag (Figs. 5, 7 and 
8). A delay was seen in the early morning as 
well, when the high radon concentration lasted 
for a while after the clear increase in the ML 

height. While similar features have been pointed 
out by Guedalia et al. (1980) and Chambers 
et al. (2011), the reason for such a phenom-
enon has not been clearly attributed to the pro-
cesses taking place in the atmosphere. Here an 
improved mechanism related to turbulent mixing 
is proposed for these observations based on a 
mass balance analysis (Eqs. 8–11).

Since 222Rn stems from the decay chain of 
238U that originates from the ground, free tropo-
sphere is expected to have a low radon concen-
tration. According to Galeriu et al. (2011), a 
difference of one to three orders of magnitude 
exists between the radon concentration in the 
free troposphere and that near the ground sur-
face. However, the residual layer preserves the 
remnant radon from the ML of the previous 
day. As the ML rises, it swallows in radon from 
the residual layer only, provided that the ML 
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height does not exceed that of the previous day. 
Otherwise, the nearly radon-free air from the 
free troposphere would significantly reduce the 
radon concentration in the ML. An example of 
the behaviours of the dilution and decay terms in 
the mass balance for the radon in the ML (Eqs. 
8–11) is present in Fig. 10. This analysis was 
carried out using the median radon concentration 
and the median modelled ML height of the diur-
nal data from the summers of 2000–2006. As the 
ML typically is deepest in summer (McGrath-
Spangler and Denning 2013) and tends to deepen 
towards the end of summer (Leventidou et al. 
2013), the air from the free troposphere has the 
greater effect on the dilution at this time of the 
year. In addition, the sum of the dilution and 
decay terms should be negative, since there 
is another source, the exhalation term, in the 
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balance equation. Accordingly, the atmospheric 
radon concentration above the ML, when assum-
ing C0 to be constant, should be smaller than 
0.0627 Bq m–3. The position and shape of the 
curves in Fig. 10 are insensitive to small varia-
tions in C0.

The relatively-stable nocturnal bound-
ary layer had a depth slightly below 200 m in 
summer (Fig. 5b). At around 04:30 in the morn-
ing, the ML started to expand and the atmos-
pheric radon concentration reached its maximum 
(Fig. 5a). An increase in the ML height reduces 
the exhalation term in Eq. 8. In addition, the 
sum of the dilution and decay terms possessed 
negative values, even though this sum exhib-
ited an exponential increase with an increase 
in the ML height (Fig. 10). Thus, in principle, 
the atmospheric radon concentration should drop 
simultaneously, which however, showed a delay 
by about 2 h. This observation could be related 
to the low turbulence in summer before 06:30 
(Fig. 8): the solar radiation induced shear-driven 
turbulence in the top layer of the ML first and the 
gradual transport of this mixing to the measure-
ment level retarded the instantaneous decrease 
in radon concentration. Using six years of data, 
Lapworth (2006) showed, that the downward 
transportation of turbulence is primarily responsi-
ble for warming up the surface layer. The surface 

heating enables the transition from shear-driven 
to convective mixing in the morning, but the 
warming of the surface layer comes mostly from 
the entrainment above due to the mechanical tur-
bulence (Angevine 2001). The end of the morn-
ing transition occurs typically at the maximum 
extension rate of the ML depth, which is the onset 
of ML growth after the stable boundary layer is 
eroded (Pal et al. 2012, Pal et al. 2013), when the 
dilution effect on atmospheric radon concentra-
tion due to vertical mixing becomes pronounced. 
As for the shrinkage of the ML, the dilution term 
was zero, i.e. exhalation was the only source term 
in the mass balance equation. The turbulence was 
gradually discharged in the beginning of the ML 
thinning (Fig. 8) and such decay in turbulence 
is typically initialised in the top layer of the ML 
(Darbieu et al. 2014). Correspondingly, only a 
gentle increase in the median radon concentra-
tion was observed (Fig. 5a). When the turbulence 
diminished, the accumulation of radon became 
predominant near the ground surface and a clear 
recovery in the atmospheric radon concentration 
eventually emerged after 19:00 (Fig. 5a). Once 
such a relatively stable condition was encoun-
tered, especially in spring and summer, the accu-
mulation of radon near the ground surface contin-
ued until turbulence was introduced again in the 
following morning.
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Apart from the convective transport of radon 
gas in the ML, the advective motion of air 
masses brings also variations in the atmospheric 
radon concentration. As 222Rn has a half-life of 
3.8 days, sources originating far away from the 
SMEAR II station may be detected at this site 
after a long journey guided by the movement of 
air masses in the atmosphere.

The lowest median radon concentrations at 
the SMEAR II station were typically observed 
when the wind blew from the northwest regard-
less of the wind speed. Such winds are expected 
to bring air masses of marine origins to the 
measurement site (Fig. 11). Because the role of 
the oceans as a radon source is negligible, these 

marine air masses, which originate typically from 
the Atlantic Ocean, carry only small amounts of 
radon, resulting in the observation of the lowest 
radon concentration. Relatively high median 
radon concentrations, especially in spring and 
summer, were observed with the lowest median 
wind speeds from the northeast. This phenom-
enon might be ascribed to situations, where under 
certain combinations of the locations of high and 
low pressure systems, air masses arriving at the 
SMEAR II station from the northeast actually 
originate from continental areas of eastern Europe 
or Russia rather than from marine regions. In 
the springtime, high median radon concentra-
tions generally span over the wind directions of 
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30°–180°, with the maximum found with south-
easterly winds associated with the continental air 
masses. Such a pattern existed in summer as well, 
however, with the maximum observed with both 
southeasterly and northeasterly winds. Although 
high median radon concentrations were also asso-
ciated with southeasterly winds in autumn and 
winter seasons, in contrast to the warmer seasons, 
median radon concentrations remained at rela-
tively low levels when the wind came from the 
northeast. The southwesterly winds were strong-
est in all seasons, but brought, on average, only 
moderate amounts of radon, possibly due to the 
mixing in of clean marine air masses from the 
Atlantic Ocean, because air masses coming to 
Finland from the west have more mid-latitude 
weather system activity than air masses coming 
from the east (Hoskins and Hodges 2002, Sinclair 
et al. 2012).

Trajectory analysis

The highest wind speed was measured between 
12:00 and 15:00 (Fig. 8). In order to minimise the 
perturbation from local radon sources, radon data 
in this time window were used in the trajectory 
analysis. Overall, the relative concentration (see 
Fig. 12) suggested that the high radon relative 
concentration came substantially from the south-
east. This observation aligns with the outcomes 
obtained from the exploration of the atmospheric 
radon concentration in relation to winds (Fig. 
11) and also agrees with the results for 210Pb, a 
daughter nuclide of 222Rn, shown by Paatero and 
Hatakka (2000) based on samples collected at 
Sodankylä station (67°22´N, 26°39´E) in Fin-
land. Riuttanen et al. (2013) showed that the 
potential source areas of aerosol particles located 
in the eastern Europe and Russia, which coincide 
with the hotspots depicted in Fig. 12 for radon, 
indicating the consistency in air mass transport. 
According to Wilkening and Clements (1975), 
the exhalation rate of 222Rn over ocean is less 
than 2% of that over the continental areas. Oce-
anic air masses, therefore, share practically no 
contribution to the observed atmospheric radon 
concentration at the SMEAR II station whereas 
air masses passed over continental land take part 
in the transportation of radon gas originating 

from locations other than the measurement site. 
Consequently, in the annual trajectory statistics, 
hotspots of radon were observed over the con-
tinent in the southeast (Fig. 12). Besides, high 
relative concentration of radon was identified on 
the southern coast of Finland around Helsinki, 
coincident with the pattern shown by Szegvary 
et al. (2009) and the high concentration regions 
shown on the indoor radon map published by the 
Finnish Radiation and Nuclear Safety Authority 
(STUK 2014) and on the European indoor radon 
map (Tollefsen et al. 2014).

The transport pattern of radon, however, 
showed distinct seasonal features (Fig. 13). 
The continental air masses from the southeast 
brought especially large portion of radon to the 
SMEAR II station in spring and autumn, com-
pared with the other two seasons. Sources of 
radon could be seen in northern Sweden all year 
round except in autumn. With the exception of 
winter, southern Sweden and Norway typically 
had slightly higher radon concentrations. An 
interesting spot was found for summer in south-
ern Norway near the border with Sweden, which 
was probably due to the dilution by marine air 
masses over the surrounding regions. This region 
has been reported to have relatively high indoor 
radon concentrations (Tollefsen et al. 2014). The 
low concentration region over the continental 
Europe in the summer could also be attrib-
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uted to the mixing-in of clean air masses from 
the ocean and increased precipitation. The high 
radon concentration in winter was found mainly 
over the continental areas, though the long-range 
transport from North America may contribute to 
the observation of radon over the North Atlantic 
Ocean (Rummukainen et al. 1996, Paatero and 
Hatakka 2000).

Summary and conclusions

Long-term radon data collected during 2000–
2006 at the SMEAR II station in a Finnish 
boreal forest were analysed along with mete-
orological data and trajectory information for the 
exploration of the variability of the atmospheric 

222Rn concentration in response to the vertical 
mixing and spatial transportation. No distinct 
inter-annual variation in the atmospheric radon 
concentration was found. The daily mean radon 
concentration followed a log-normal distribution 
ranging between < 0.1 and 11 Bq m–3, with the 
geometric mean of 2.5 Bq m–3 and a geometric 
standard deviation of 1.7 Bq m–3. A similar dis-
tribution also existed in the daily median con-
centrations. In general, the lowest atmospheric 
radon concentration was found in spring, most 
likely because of the joint effect of the enhanced 
vertical mixing and the reduced local emissions 
due to snow thawing. Clear diurnal variations in 
hourly median radon concentration were discern-
ible from March to October, with a maximum at 
around 06:00 and a minimum at around 16:00.

  0°
 10°E  20°E  30°E

 40°E

 50°N

 60°N

 70°N

Spring

  0°
 10°E  20°E  30°E

 40°E

 50°N°N

 60°N

 70°N

Summer

R
el

at
iv

e 
co

nc
en

tra
tio

n

0

0.5

1

1.5

2

2.5

3

  0°
 10°E  20°E  30°E

 40°E

 50°N

 60°N

 70°N

Autumn

  0°
 10°E  20°E  30°E

 40°E

 50°N

 60°N

 70°N

Winter

Fig. 13. Trajectory statistics of the relative atmospheric radon concentration (to the observed concentration at the 
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In general, the median radon concentration 
was inversely related to the depth of the mixing 
layer (ML) height. However, a plateau was 
observed for the ML heights between 1500 and 
2500 m, which coincided with an increased air 
temperature. This situation resulted from both 
the enhanced radon exhalation from soil due to 
the increasing temperature and the promoted 
dilution as the consequence of the thickening 
of the ML. During the winter months, the 222Rn 
concentration was relatively high with very little 
diurnal variation. Radon was accumulated near 
the surface as a consequence of the absence of 
solar radiation and subsequently reduced verti-
cal mixing of the air. Later in the spring the 
concentration level decreased, when the mixing 
was intensified as the amount of solar radia-
tion increased. The minimum concentrations was 
observed in the late spring when daytime con-
vective movements of the air diluted the radon 
content of the air to a bigger volume and the flux 
of radon from the ground to the atmosphere was 
at its seasonal minimum due to the high moisture 
content in the soil due to snow thawing. In the 
late summer, the diurnal variation of atmospheric 
radon concentration was at its maximum due to 
frequent nocturnal surface inversions and the 
simultaneous high radon flux from the ground 
to the atmosphere. The latter factor, in turn, is 
related to the low soil moisture content, espe-
cially in the surface layer.

The lowest radon concentration was related 
to clean marine air masses arriving at the 
SMEAR II station from the northwest, and high 
radon concentrations were typically found during 
southeasterly winds of continental origins. These 
observations were confirmed by the trajectory 
analysis. A reduction in the atmospheric radon 
concentration was observed in response to the 
intensification of wind speed. In addition, the 
downward transportation of turbulence from the 
top of the ML layer in the early morning led to 
a delayed response in the atmospheric radon 
concentration to the expansion of the ML. Simi-
larly, the discharge of residual turbulence in the 
shrinking ML retarded the immediate recovery 
of the atmospheric radon concentration.

The features in the variability of the atmos-
pheric radon concentration found here in relation 
to the development of the mixing volume and 

the spatial transportation are important charac-
teristics of radon in the atmosphere. In general, 
the variation in atmospheric radon concentra-
tion can capture the vertical mixing height well. 
However, as shown in this paper, the changes in 
atmospheric radon concentration do not instantly 
follow the start of ML growth and shrinkage. 
This information is of paramount importance 
when determining the ML height or parameteris-
ing the PBL mixing processes from radon data. 
In addition, our results imply that radon is a 
suitable candidate for studying the evolution of 
the turbulence during morning and evening tran-
sitions in the boundary mixing processes. Nev-
ertheless, it is also crucial to take into account 
the effect of the horizontal transportation on the 
atmospheric radon concentration. Wind either 
potentially carries more radon to the site or 
dilutes locally-emitted atmospheric radon. Such 
information can be typically obtained by study-
ing the trajectories of air masses arriving at the 
measurement site, without which biases may 
be introduced when comparing similar verti-
cal mixing processes of different days by using 
radon. Moreover, as an inert and long-lived gas, 
radon is useful in evaluating transport models, 
which can be applied to other trace compo-
nents or pollutants in the atmosphere. Yet, to 
improve the accuracy of the transport pattern, it 
is important to be cautious about the variations 
in atmospheric radon concentration introduced 
by the boundary layer dynamics along the air-
mass trajectories.
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