140 research outputs found

    Using genetics to understand the dynamics of wild primate populations

    Get PDF
    While much can be learned about primates by means of observation, the slow life history of many primates means that even decades of dedicated effort cannot illuminate long-term evolutionary processes. For example, while the size of a contemporary population can be estimated from field censuses, it is often desirable to know whether a population has been constant or changing in size over a time frame of hundreds or thousands of years. Even the nature of “a population” is open to question, and the extent to which individuals successfully disperse among defined populations is also difficult to estimate by using observational methods alone. Researchers have thus turned to genetic methods to examine the size, structure, and evolutionary histories of primate populations. Many results have been gained by study of sequence variation of maternally inherited mitochondrial DNA, but in recent years researchers have been increasingly focusing on analysis of short, highly variable microsatellite segments in the autosomal genome for a high-resolution view of evolutionary processes involving both sexes. In this review we describe some of the insights thus gained, and discuss the likely impact on this field of new technologies such as high-throughput DNA sequencing

    Social Bonds Enhance Reproductive Success in Male Macaques

    Get PDF
    SummaryFor animals living in mixed-sex social groups, females who form strong social bonds with other females live longer and have higher offspring survival [1–3]. These bonds are highly nepotistic, but sometimes strong bonds may also occur between unrelated females if kin are rare [2, 3] and even among postdispersal unrelated females in chimpanzees and horses [4, 5]. Because of fundamental differences between the resources that limit reproductive success in females (food and safety) and males (fertilizations), it has been predicted that bonding among males should be rare and found only for kin and among philopatric males [6] like chimpanzees [7–9]. We studied social bonds among dispersing male Assamese macaques (Macaca assamensis) to see whether males in multimale groups form differentiated social bonds and whether and how males derive fitness benefits from close bonds. We found that strong bonds were linked to coalition formation, which in turn predicted future social dominance, which influenced paternity success. The strength of males' social bonds was directly linked to the number of offspring they sired. Our results show that differentiated social relationships exert an important influence on the breeding success of both sexes that transcends contrasts in relatedness

    The complex Y-chromosomal history of gorillas

    Get PDF
    Studies of the evolutionary relationships among gorilla populations using autosomal and mitochondrial sequences suggest that male-mediated gene flow may have been important in the past, but data on the Y-chromosomal relationships among the gorilla subspecies are limited. Here, we genotyped blood and noninvasively collected fecal samples from 12 captives and 257 wild male gorillas of known origin representing all four subspecies (Gorilla gorilla gorilla, G. g. diehli, G. beringei beringei, and G. b. graueri) at 10 Y-linked microsatellite loci resulting in 102 unique Y-haplotypes for 224 individuals. We found that western lowland gorilla (G. g. gorilla) haplotypes were consistently more diverse than any other subspecies for all measures of diversity and comprised several genetically distinct groups. However, these did not correspond to geographical proximity and some closely related haplotypes were found several hundred kilometers apart. Similarly, our broad sampling of eastern gorillas revealed that mountain (G. b. beringei) and Grauer's (G. b. graueri) gorilla Y-chromosomal haplotypes did not form distinct clusters. These observations suggest structure in the ancestral population with subsequent mixing of differentiated haplotypes by male dispersal for western lowland gorillas, and postisolation migration or incomplete lineage sorting due to short divergence times for eastern gorillas

    Quantitative estimates of glacial refugia for chimpanzees (Pan troglodytes) since the Last Interglacial (120,000 BP)

    Get PDF
    Paleoclimate reconstructions have enhanced our understanding of how past climates have shaped present-day biodiversity. We hypothesize that the geographic extent of Pleistocene forest refugia and suitable habitat fluctuated significantly in time during the late Quaternary for chimpanzees (Pan troglodytes). Using bioclimatic variables representing monthly temperature and precipitation estimates, past human population density data, and an extensive database of georeferenced presence points, we built a model of changing habitat suitability for chimpanzees at fine spatio-temporal scales dating back to the Last Interglacial (120,000 BP). Our models cover a spatial resolution of 0.0467° (approximately 5.19 km2 grid cells) and a temporal resolution of between 1000 and 4000 years. Using our model, we mapped habitat stability over time using three approaches, comparing our modeled stability estimates to existing knowledge of Afrotropical refugia, as well as contemporary patterns of major keystone tropical food resources used by chimpanzees, figs (Moraceae), and palms (Arecacae). Results show habitat stability congruent with known glacial refugia across Africa, suggesting their extents may have been underestimated for chimpanzees, with potentially up to approximately 60,000 km2 of previously unrecognized glacial refugia. The refugia we highlight coincide with higher species richness for figs and palms. Our results provide spatio-temporally explicit insights into the role of refugia across the chimpanzee range, forming the empirical foundation for developing and testing hypotheses about behavioral, ecological, and genetic diversity with additional data. This methodology can be applied to other species and geographic areas when sufficient data are available.Additional co-authors: Alfred K. Assumang, Emma Bailey, Mattia Bessone, Bartelijntje Buys, Joana S. Carvalho, Rebecca Chancellor, Heather Cohen, Emmanuel Danquah, Tobias Deschner, Zacharie N. Dongmo, Osiris A. DoumbĂ©, Jef Dupain, Chris S. Duvall, Manasseh Eno-Nku, Gilles Etoga, Anh Galat-Luong, Rosa Garriga, Sylvain Gatti, Andrea Ghiurghi, Annemarie Goedmakers, Anne-CĂ©line Granjon, Dismas Hakizimana, Josephine Head, Daniela Hedwig, Ilka Herbinger, Veerle Hermans, Sorrel Jones, Jessica Junker, Parag Kadam, Mohamed Kambi, Ivonne Kienast, CĂ©lestin Y. Kouakou, KouamĂ© P. Nâ€ČGoran, Kevin E. Langergraber, Juan Lapuente, Anne Laudisoit, Kevin C. Lee, Nadia Mirghani, Deborah Moore, David Morgan, Emily Neil, Sonia Nicholl, Louis Nkembi, Anne Ntongho, Christopher Orbell, Lucy Jayne Ormsby, Liliana Pacheco, Alex K. Piel, Lilian Pintea, Andrew J. Plumptre, Aaron Rundus, Crickette Sanz, Volker Sommer, Tenekwetche Sop, Fiona A. Stewart, Jacqueline Sunderland-Groves, Nikki Tagg, Angelique Todd, Els Ton, Joost van Schijndel, Hilde VanLeeuwe, Elleni Vendras, Adam Welsh, JosĂ© F. C. Wenceslau, Erin G. Wessling, Jacob Willie, Roman M. Wittig, Nakashima Yoshihiro, Yisa Ginath Yuh, Kyle Yurkiw, Christophe Boesch, Mimi Arandjelovic, Hjalmar KĂŒh

    Dispersal and reproductive careers of male mountain gorillas in Bwindi Impenetrable National Park, Uganda

    Get PDF
    Dispersal is a key event in the life of an animal and it influences individual reproductive success. Male mountain gorillas exhibit both philopatry and dispersal, resulting in a mixed one-male and multimale social organization. However, little is known about the relationship between male dispersal or philopatry and reproductive careers in Bwindi mountain gorillas. Here we analyze data spanning from 1993 to 2017 on social groups in Bwindi Impenetrable National Park, Uganda to examine the proportion of males that disperse, age of dispersal, pathways to attaining alpha status, fate of dispersing males and philopatric males, and male tenure length as well as make comparisons of these variables to the Virunga mountain gorilla population. We report previously undocumented cases of dispersal by immature males and old males and we also observed the only known case of a fully mature male immigrating into a breeding group. We used genetic tracking of known individuals to estimate that a minimum of 25% of males that disperse to become solitary males eventually form new groups. No differences were found between the Bwindi and Virunga population in the age of male dispersal, the proportion of males that disperse, the age of alpha male acquisition, and dominance tenure length. The lack of differences may be due to small sample sizes or because the observed ecological variability does not lead to life history differences between the populations. Males in both populations follow variable strategies to attain alpha status leading to the variable one-male and multimale social organization, including dispersal to become solitary and eventually form a group, via group fissioning, usurping another alpha male, or inheriting the alpha position when a previous group leader dies

    The Genetic Signature of Sex-Biased Migration in Patrilocal Chimpanzees and Humans

    Get PDF
    A large body of theoretical work suggests that analyses of variation at the maternally inherited mitochondrial (mt)DNA and the paternally inherited non-recombining portion of the Y chromosome (NRY) are a potentially powerful way to reveal the differing migratory histories of men and women across human societies. However, the few empirical studies comparing mtDNA and NRY variation and known patterns of sex-biased migration have produced conflicting results. Here we review some methodological reasons for these inconsistencies, and take them into account to provide an unbiased characterization of mtDNA and NRY variation in chimpanzees, one of the few mammalian taxa where males routinely remain in and females typically disperse from their natal groups. We show that patterns of mtDNA and NRY variation are more strongly contrasting in patrilocal chimpanzees compared with patrilocal human societies. The chimpanzee data we present here thus provide a valuable comparative benchmark of the patterns of mtDNA and NRY variation to be expected in a society with extremely female-biased dispersal

    Historical sampling reveals dramatic demographic changes in western gorilla populations

    Get PDF
    Background: Today many large mammals live in small, fragmented populations, but it is often unclear whether this subdivision is the result of long-term or recent events. Demographic modeling using genetic data can estimate changes in long-term population sizes while temporal sampling provides a way to compare genetic variation present today with that sampled in the past. In order to better understand the dynamics associated with the divergences of great ape populations, these analytical approaches were applied to western gorillas (Gorilla gorilla) and in particular to the isolated and Critically Endangered Cross River gorilla subspecies (G. g. diehli).Results: We used microsatellite genotypes from museum specimens and contemporary samples of Cross River gorillas to infer both the long-term and recent population history. We find that Cross River gorillas diverged from the ancestral western gorilla population ~17,800 years ago (95% HDI: 760, 63,245 years). However, gene flow ceased only ~420 years ago (95% HDI: 200, 16,256 years), followed by a bottleneck beginning ~320 years ago (95% HDI: 200, 2,825 years) that caused a 60-fold decrease in the effective population size of Cross River gorillas. Direct comparison of heterozygosity estimates from museum and contemporary samples suggests a loss of genetic variation over the last 100 years.Conclusions: The composite history of western gorillas could plausibly be explained by climatic oscillations inducing environmental changes in western equatorial Africa that would have allowed gorilla populations to expand over time but ultimately isolate the Cross River gorillas, which thereafter exhibited a dramatic population size reduction. The recent decrease in the Cross River population is accordingly most likely attributable to increasing anthropogenic pressure over the last several hundred years. Isolation of diverging populations with prolonged concomitant gene flow, but not secondary admixture, appears to be a typical characteristic of the population histories of African great apes, including gorillas, chimpanzees and bonobos
    • 

    corecore