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Summary

For animals living in mixed-sex social groups, females who
form strong social bonds with other females live longer

and have higher offspring survival [1–3]. These bonds are
highly nepotistic, but sometimes strong bonds may also

occur between unrelated females if kin are rare [2, 3] and
even among postdispersal unrelated females in chimpan-

zees and horses [4, 5]. Because of fundamental differences
between the resources that limit reproductive success in

females (food and safety) and males (fertilizations), it has
been predicted that bonding among males should be rare

and found only for kin and among philopatric males [6] like
chimpanzees [7–9]. We studied social bonds among

dispersing male Assamese macaques (Macaca assamensis)
to seewhethermales inmultimale groups formdifferentiated

social bonds and whether and how males derive fitness

benefits from close bonds. We found that strong bonds
were linked to coalition formation, which in turn predicted

future social dominance, which influenced paternity
success. The strength of males’ social bonds was directly

linked to the number of offspring they sired. Our results
show that differentiated social relationships exert an impor-

tant influence on the breeding success of both sexes that
transcends contrasts in relatedness.

Results

We used data from wild male Assamese macaques at Phu
Khieo Wildlife Sanctuary in Thailand collected over a 2 year
period (subdivided into three consecutive study periods based
on changes in male dominance hierarchy; see Experimental
Procedures) to investigate how sociality influences coalition
formation, how coalition formation affects future dominance
status, and how status is related to paternity. Males formed
strongly differentiated social relationships with other males
(see Supplemental Experimental Procedures). Close bonds
were not confined to potential kin. Across dyads, the strength
of social bonds (composite sociality index, CSI [2], based on
association and grooming frequencies) was not predicted by
mitochondrial DNA sequence identity in any of the three study
periods (Spearman’s row-wise matrix correlations period 1: 12
males, Rr = 2755, rrw, av = 20.10, p = 0.81; period 2: 12 males,
Rr = 2600, rrw, av = 20.08, p = 0.72; period 3: 11 males,
*Correspondence: oschuel@gwdg.de
Rr = 526.5, rrw, av = 0.12, p = 0.22). More than half of the top
three social bonds per male (59%, 62%, 54% in periods 1–3)
involved males with dissimilar haplotypes who must represent
maternally unrelated males.
Social partner preferences were linked to contest for social

status within the group. Males frequently formed agonistic
coalitions ([10], 0.11/hr) in which joint aggression is displayed
by two or more males against a common male target. The
stronger the bond between twomales, the more often they co-
operated in conflicts (Spearman’s row-wise matrix correlation
period 1: Rr = 4941.8, rhorw, av = 0.43, p = 0.001; period 2:
Rr = 2777.5, rhorw, av = 0.49, p = 0.0005; period 3: Rr = 224.5,
rhorw, av = 0.35, p = 0.015). If the adaptive function of coalition
formation is to increase and maintain both allies’ social domi-
nance, then coalition formation should be linked to dominance
in the future. Accordingly, the total number of coalitions amale
formed was related to his future dominance success
measured by the normalizedDavid’s score [11] (nDS), a contin-
uous measure of dominance (Pearson correlation of coalitions
period 1 and nDS period 2: r = 0.69, n = 12, p = 0.019; coalitions
period 2 and nDS period 3: r = 0.58, n = 11, p = 0.059). Predict-
ability increased with increasing time depth (coalitions period
1 and nDS period 3: r = 0.73, n = 11, p = 0.011). Our analyses
suggest that any coalition provides benefits to both partners,
i.e., dominants also benefit from cooperating with or support-
ing subordinates.
The quality of a male’s social relationships, measured as the

combined strength of his top three social bonds, is directly
linked to his future dominance success (CSI period 1 and
nDS period 2: r = 0.60, n = 12, p = 0.036; CSI period 2 and
nDS period 3: r = 0.72, n = 11, p = 0.013; CSI period 1
and nDS period 3: r = 0.75, n = 11, p = 0.007; Figure 1), but
not to his current dominance success (within period 1:
r = 0.51, n = 12, p = 0.16; period 2: r = 0.54, n = 12, p = 0.087;
period 3: r = 0.31, n = 12, p = 0.35). Moreover, the reverse corre-
lations, i.e., between current dominance success and future
social bonds, were also not significant (Pearson correlation
nDS period 1 and CSI period 2: r = 0.31, n = 12, p = 0.34;
nDS period 1 and CSI period 3: r = 0.009, n = 11, p =
0.98; nDS period 2 and CSI period 3: r = 0.13, n = 11, p =
0.71), which collectively suggests a causal link between soci-
ality and dominance, and not vice versa. We focused on the
cumulative strength of the top three closest bonds per male
in order to keep the number of bonds constant and evaluate
the influence of their strength instead (following research on
bonding in females [1, 2]). But we also found that our results re-
mained unchanged if strength of all bonds, instead of the top
three bonds, was used to predict future status (data not
shown).
In order to further investigate the dynamics underlying male

social bonding, we extended our analysis to include a fourth
period (the nonmating season following period 3) for which
data on ordinal ranks were available (top rank = 1). When
individual sociality changed, future dominance rank did not
change randomly but followed similar trajectories in most
individuals. Specifically, the distribution of individual correla-
tion coefficients between sociality and future ordinal rank
was significantly different from a normal distribution
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Figure 1. Link between Sociality and Dominance

Success

(A–C) Sociality, measured as the cumulative strength of

the top three closest bonds of a male, predicts future

(B and C) but not current (A) dominance success. The

pattern did not result from all high-ranking males being

more social than low-ranking ones, as was predicted

by older models on grooming distribution in primates

[19]. For most males, increases in sociality were associ-

ated with increased future status, and vice versa. These

trajectories were not easily explained by changes in

male age. Males with strong bonds increased their domi-

nance success or maintained high status, whereas high-

ranking males that failed to bond dropped in rank or

stayed at the bottom of the hierarchy (see Results for

statistical results).
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(Shapiro-Wilks test: W = 0.75, n = 7, p = 0.012), with a large
negative median correlation coefficient at 20.84 (interquartile
range: 20.99 to 0.03) indicating that males that became less
sociable fell in rank and that males that becamemore sociable
over time rose in rank. The sociality-rank trajectories were not
age related. Age-rank relationships ofmales in nonprovisioned
primate groups usually follow a bell curve [12, 13]. Age in
period 1 did not predict future dominance (correlation with
dominance period 3 polynomial fit: r = 20.47, n = 11, p =
0.15; dominance period 4 polynomal fit: r = 20.07, n = 11,
p = 0.87). Males of the same age were asmuch as six and eight
ranks apart in period 4, because some had risen to the top
while some stayed at the very bottom of the hierarchy, indi-
cating that males follow different routes as they age. Thus,
for male macaques, strong social bonds predict high future
social status, irrespective of age.

As the last step in our chain of evidence, we analyzed two
years of paternity data and found that males of high ordinal
dominance rank enjoy higher reproductive success (Spear-
man’s rho = 20.85, n = 12 ranks, p = 0.0006; 12 infants sired
in periods 1 and 3). More directly, we can show that the
strength of male social bonds (in period 1) predicts the number
of offspring sired in the subsequent mating season (period 3),
when the benefits of bonding are manifest (Spearman’s rho =
0.76, n = 11 males, p = 0.0102; five infants, Figure 2).
Discussion

Our highly consistent results linking a series of predicted rela-
tionships through several study periods suggest that the
adaptive function of closemale bonds arises from cooperation
in competition for social status [14], which in turn determines
reproductive success. Bonding provided benefits to both part-
ners—dominant and subordinate—which may explain why
males invest in affiliative relationships despite living in
a society with strict dominance rank relationships [10] in which
dominant males enjoy priority of access to the nonsharable
resource of fertilizations [15]. As a case in point, the third-
ranking male at the beginning of the study was one of the
largest males in the group andwas in excellent physical condi-
tion. However, he failed to form strong bondswith othermales,
participated in few coalitions, and subsequently dropped to
rank 6 in period 2 and rank 8 in period 3. High-ranking males
that invested in social bonds and formed coalitions—often
with mid- or low-ranking individuals—maintained their high
status. Hence, irrespective of rank, both partners may
inevitably benefit from forming social bonds and cooperating
in coalitions [15].
Our results linking paternity success to participation in coa-

litions and alliances corroborate earlier findings on lions,
horses, birds, and dolphins [16–20]. The situation in male
Assamese macaques resembles that of female primates,
including humans, in that they (1) base their partner choice
on differentiated social bonds, (2) cooperate with only a few
coresidents against other coresidents, and (3) live in closed
groups, i.e., individuals cannot easily change from one group
to another but usually stay in the same group for several years.
In the cases in which an adaptive value of differentiated social
bonds has been demonstrated, female primates bias their
behavior toward kin [1–3]. Here we demonstrate for the first
time a causal link between differentiated social bonds and
fitness (1) in males and (2) in the absence of a strong kin
bias. The existence of differentiated social bonds among
both unrelated male and female chimpanzees [5, 9], together
with our findings, suggests that the universal human tendency
to engage in close social bonds may have evolutionary origins
outside the context of the extended family.
Despite the similarities of male and female bonding

behavior, the mechanisms that promoted the evolution of
strong bonds seem to be fundamentally different. Female
bonding is thought to promote the formation of agonistic alli-
ances that increase an individual’s access to limiting
resources, thus immediately and directly increasing energy
gain rates independent of dominance rank [21]. Rather than
food, males compete over an even scarcer and ultimately indi-
visible resource, fertilizations. Our results suggest that
bonding serves a political function in male Assamese
macaque society, because males try to enhance their own
status relative to that of others by manipulating social relation-
ships [22] outside the context of mating competition. Thus, in
large multimale primate groups, such political strategizing
may be more important in the social lives of males than
females.

Experimental Procedures

Study Site and Data Collection

The study was carried out at Huai Mai Sot Yai in the 1573 km2 Phu Khieo

Wildlife Sanctuary (16�05-35’N and 101�20-55’E) in Thailand [23, 24]. The

main study period (October 2006–January 2008), comprising two mating

seasons, was subdivided into three consecutive periods according to

changes in the male dominance hierarchy. For a fourth period (February–

May 2008), data on ordinal ranks were available. Data were collected in

20 or 30 min focal animal protocols on large males [10] using continuous
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Figure 2. Male Sociality Predicts Reproductive Success

Each male formed strong bonds with only 3 of the 10 or 11 coresidents on

average. The strength of the top three bonds predicted fitness outcomes

(number of infants sired) that were measured in the subsequent mating

season, when the effect of strong bonds on social status is manifest. The

relationship remained significant when the three least-social males that

did not sire offspring were excluded (n = 8 males, Spearman’s rho = 0.72,

p < 0.05).
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recording of all social and approach-depart interactions into and from 1.5 m

of the focal animal (1218 hr, 106.1 6 5.5 standard deviation hours per male,

excluding onemale that emigrated during the study), aswell as by ad libitum

sampling of agonism [25]. Fecal samples for genetic analyses were

collected opportunistically from all members of the habituated study group

during behavioral observation (R3 samples per individual) and opportunis-

tically from other nonhabituated Assamese macaque groups. Preserved

samples [26] were transported back to the laboratory, and genomic DNA

was extracted from 0.1 g of fecal sample using a modified version [26] of

the protocol provided with QIAamp DNA Stool Kit (QIAGEN) from 10–16

samples at a time. Blanks were included during extraction to monitor for

contamination. Dominance success was measured from asymmetries in

the exchange of subordination signals in dyadic conflicts among males

using the corrected nDS, with high values indicating high dominance status

[10, 11]. The CSI relates association (in less than 1.5 m) and grooming

frequencies of two individuals to the averages across all dyads [2]. Age

was estimated from body size and shape, dental morphology, skin condi-

tion, and testicular development. All statistical tests are two-tailed, with

the alpha level set at 0.05 in Statistica 8 and MatMan 1.1.

Paternity Analyses

Genotyping reactions were carried out using the two-step multiplex poly-

merase chain reaction (PCR) protocol [27]. Primers were fluorescently

labeled on the 50 ends. We ran PCR products on an ABI 3100 genetic

analyzer (Applied Biosystems) and used Genemapper (version 3.7) software

to compare product sizes relative to the ROX HD400 internal size standard.

DNA extracts were genotyped at the loci D5s1457, D10s676, D18s536,

D3s1768, D1s1656, D9s910, D3s1766, D2s1768, D2s1363, D1s1675,

D8s1106, D9s934, D6s1056, D17s804, D2s1326, and D14s306. Sex of indi-

viduals was confirmed or determined using a PCR-based sexing assay [28].

DNA concentration of the extracts was estimated using a real-time PCR

assay [29]. A locus was accepted as heterozygous only if each allele

occurred at least two times in independent PCR reactions. Using results

from loci determined to be heterozygous, we estimated that the number

of PCR replicates required to determine with >99% certainty that a given

allele is homozygous and not a result of allelic dropout was 3 for extracts

with%25 pg/ml of DNA and 2 for extracts withR26 pg/ml of DNA. Conserva-

tively, we accepted a locus as homozygous only if the allele occurred

independently at least four times in PCR reactions with DNA quantities

%25 pg/ml or if it occurred independently at least three times for samples

with R50 pg/ml.

Individual identities of the samples were confirmed by comparing the

genotypes of known mother-and-offspring pairs. In addition, we genotyped
two ormore independent DNA extracts, wherever available, from each iden-

tified individual in order to confirm the identity of the animals (w1.9

samples/animal). Because several sampleswere also collected from nonha-

bituated groups comprised of unknown individuals, Cervus 3.0.3 [30] was

used for a pairwise comparison of multilocus genotypes to identify unique

genotypes that matched with one another across the loci genotyped. Geno-

types matching exactly at six or more loci were combined into a consensus

genotype.

Genotypes of potential fathers (n = 21) from within and outside of the

group (including samples typed as male from the unhabituated groups)

were used in paternity analyses. All mother-offspring pairs known from

behavioral observation were confirmed to share an allele at each locus.

We then used the likelihoodmethod as implemented in Cervus 3.0.3 to iden-

tify the twomost likely fathers (1% error rate, minimum number of loci typed

9, 21 candidate fathers, proportion of loci typed 0.86, proportion of candi-

date fathers sampled 0.7).

Genotypes were generated at a minimum of 7 loci and a maximum of

15 loci from 144 individuals (mean completion 81%). Using Cervus, we

found that the mean number of alleles per locus was 7.2, mean polymor-

phism information content was 0.66, mean expected heterozygosity across

all 15 loci was 0.71, and average observed heterozygosity was 0.72. Loci

D2s1363 and D8s1056 depart from Hardy-Weinberg equilibrium, which is

attributable to the presence of close relatives in the study group.

The individual probability of identity was 5.59 3 10215, and the sibling

probability of identity P(ID)sib is 2.53 3 1026, indicating that the chance of

encountering siblings with identical genotypes is also extremely low. The

P(ID)sib even for the six least polymorphic loci was 1.57 3 1022. But,

because we included in our analysis only those samples from which we

could genotype a minimum of seven loci, the chance that the genotypes

of two random individuals would be identical is infinitesimal. Paternity could

be assigned with high positive LOD scores for 12 out of 13 offspring born

during the study period.

Spearman rank correlations between reproductive success (i.e., the

number of offspring) and either ordinal rank or CSI remained significant if

the four or three lowest-ranking or least-social males, respectively, that

also did not sire offspring were excluded from analysis (rank and reproduc-

tive success: n = 8, rho = 20.82, p < 0.05; CSI period 1 and reproductive

success next mating season: n = 8, rho = 0.72, p < 0.05).

Relatedness Analysis

We examined which males were not maternally related using mitochondrial

DNA (mtDNA) sequence information. For each of the 12 males in the group,

a 470 bp segment of the HVR1 region of the mitochondrial DNA was PCR

amplified with primers L15996 and H16498 [31]. PCR products were excised

from agarose gel and eluted using the MinElute Gel Extraction Kit (QIAGEN)

according to themanufacturer’s recommendation. The elutedPCRproducts

were cycle sequenced in both directions, employing the BigDye Terminator

version 1.1 Cycle Sequencing Kit (Applied Biosystems), and sequenced on

a 3730 DNA Analyzer (Applied Biosystems). Sequences were edited and

aligned using BioEdit version 7.0.9.032 [32] and SeaView version 4.2 [33]

and subsequently collapsed into haplotypes using FaBox [34].

MtDNA sequences could be obtained for 11 out of the 12 males

sequenced. The 443 bp of the HVR1 region showed five variable sites

defining two haplotypes found in five and six individuals, respectively.

Paternal relatedness was not assayed because of the inaccessibility of

the Y chromosome in nonmodel organisms [35], but it was assumed to be

low, given the low reproductive skew among males (33% alpha male pater-

nity), moderate female group size (12 females), and moderate interbirth

intervals (median 22 months [36]) in our study on dispersing males [37].

From these results, we conclude that males with different haplotypes are

maternally unrelated. Males bearing identical haplotypes may have a recent

common ancestor, or relatedness may not exceed population baseline

levels. Thus, the class of potentially related male-male dyads may include

more unrelated males.

Supplemental Information

Supplemental Information includes Supplemental Experimental Procedures

and can be found with this article online at doi:10.1016/j.cub.2010.10.058.
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