18 research outputs found

    Nonthermal processes and neutrino emission from the black hole GRO J0422+32 in a bursting state

    Get PDF
    GRO J0422+32 is a member of the class of low-mass X-ray binaries (LMXBs). It was discovered during an outburst in 1992. During the entire episode a persistent power-law spectral component extending up to ∼1\sim 1 MeV was observed, which suggests that nonthermal processes should have occurred in the system. We study relativistic particle interactions and the neutrino production in the corona of GRO J0422+32, and explain the behavior of GRO J0422+32 during its recorded flaring phase. We have developed a magnetized corona model to fit the spectrum of GRO J0422+32 during the low-hard state. We also estimate neutrino emission and study the detectability of neutrinos with 1 km3^3 detectors, such as IceCube. The short duration of the flares (∼\sim hours) and an energy cutoff around a few TeV in the neutrino spectrum make neutrino detection difficult. There are, however, many factors that can enhance neutrino emission. The northern-sky coverage and full duty cycle of IceCube make it possible to detect neutrino bursts from objects of this kind through time-dependent analysis.Comment: 12 pages, 11 figures, accepted for publication in A&

    Coronal origin of the polarization of the high-energy emission of Cygnus X-1

    Get PDF
    Cygnus X-1 is the candidate with the highest probability of containing a black hole among the X-ray binary systems in the Galaxy. It is also by far the most often studied of these objects. Recently, the International Gamma-Ray Astrophysics Laboratory Imager onboard then Integral satellite ({\it INTEGRAL}/IBIS) detected strong polarization in the high-energy radiation of this source, between 400 keV and 2 MeV. This radiation has been attributed to a jet launched by the black hole. We consider whether the corona around the black hole might be the site of production of the polarized emission instead of the jet. We studied self-consistently the injection of nonthermal particles in the hot, magnetized plasma around the black hole. We show that both the high-energy spectrum and polarization of Cygnus X-1 in the low-hard state can originate in the corona, without needing to invoke a jet. We estimate the degree of polarization in the intermediate state, where there is no jet, to provide a tool to test our model. Contrary to the commonly accepted view, the jet might not be the source of the MeV polarized tail in the spectrum of Cygnus X-1.Comment: 4 pages, 2 figures, accepted in A&A Letter

    Collective non-thermal emission from an extragalactic jet interacting with stars

    Get PDF
    Context. The central regions of galaxies are complex environments, rich in evolved and/or massive stars. For galaxies hosting an active galactic nucleus (AGN) with jets, the interaction of the jets with the winds of the stars within can lead to particle acceleration, and to extended high-energy emitting regions. Aims. We compute the non-thermal emission produced by the jet flow shocked by stellar winds on the jet scale, far from the jet-star direct interaction region. Methods. First, prescriptions for the winds of the relevant stellar populations in different types of galaxies are obtained. The scenarios adopted include galaxies with their central regions dominated by old or young stellar populations, and with jets of different power. Then, we estimate the available energy to accelerate particles in the jet shock, and compute the transport and energy evolution of the accelerated electrons, plus their synchrotron and inverse Compton emission, in the shocked flow along the jet. Results. A significant fraction of the jet energy, ∼0.1−10%, can potentially be available for the particles accelerated in jet-wind shocks in the studied cases. The non-thermal particles can produce most of the high-energy radiation on jet scales, far from the jet shock region. This high-energy emission will be strongly enhanced in jets aligned with the line of sight due to Doppler boosting effects. Conclusions. The interaction of relativistic jets with stellar winds may contribute significantly to the persistent high-energy emission in some AGNs with jets. However, in the particular case of M 87, this component seems too low to explain the observed gamma-ray fluxes

    Non-thermal emission resulting from a supernova explosion inside an extragalactic jet

    Get PDF
    Context. Core-collapse supernovae are found in galaxies with ongoing star-formation. In a starburst galaxy hosting an active galactic nucleus with a relativistic jet, supernovae can take place inside the jet. The collision of the supernova ejecta with the jet flow is expected to lead to the formation of an interaction region, in which particles can be accelerated and produce high-energy emission. Aims. We study the non-thermal radiation produced by electrons accelerated as a result of a supernova explosion inside the jet of an active galactic nucleus within a star-forming galaxy. Methods. We first analyzed the dynamical evolution of the supernova ejecta impacted by the jet. Then, we explored the parameter space using simple prescriptions for the observed gamma-ray lightcurve. Finally, the synchrotron and the inverse Compton spectral energy distributions for two types of sources, a radio galaxy and a powerful blazar, are computed. Results. For a radio galaxy, the interaction between a supernova and a jet of power ∼1043 − 1044 erg s−1 can produce apparent gamma-ray luminosities of ∼1042 − 1043 erg s−1, with an event duty cycle of supernova remnant interacting with the jet close to one for one galaxy. For a blazar with a powerful jet of ∼1046 erg s−1, the jet-supernova ejecta interaction could produce apparent gamma-ray luminosities of ∼1043 − 1044 erg s−1, but with a much lower duty cycle. Conclusions. The interaction of supernovae with misaligned jets of moderate power can be relatively frequent, and can result in steady gamma-ray emission potentially detectable for sources in the local universe. For powerful blazars much farther away, the emission would be steady as well, and it might be detectable under very efficient acceleration, but the events would be rather infrequent

    A model for the repeating FRB 121102 in the AGN scenario

    Get PDF
    Context. Fast radio bursts (FRBs) are transient sources of unknown origin. Recent radio and optical observations have provided strong evidence for an extragalactic origin of the phenomenon and the precise localization of the repeating FRB 121102. Observations using the Karl G. Jansky Very Large Array (VLA) and very-long-baseline interferometry (VLBI) have revealed the existence of a continuum non-thermal radio source consistent with the location of the bursts in a dwarf galaxy. All these new data rule out several models that were previously proposed, and impose stringent constraints to new models. Aims. We aim to model FRB 121102 in light of the new observational results in the active galactic nucleus (AGN) scenario. Methods. We propose a model for repeating FRBs in which a non-steady relativistic e±-beam, accelerated by an impulsive magnetohydrodynamic driven mechanism, interacts with a cloud at the centre of a star-forming dwarf galaxy. The interaction generates regions of high electrostatic field called cavitons in the plasma cloud. Turbulence is also produced in the beam. These processes, plus particle isotropization, the interaction scale, and light retardation effects, provide the necessary ingredients for short-lived, bright coherent radiation bursts. Results. The mechanism studied in this work explains the general properties of FRB 121102, and may also be applied to other repetitive FRBs. Conclusions. Coherent emission from electrons and positrons accelerated in cavitons provides a plausible explanation of FRBs

    Disentangling the nature of the prototype radio weak BL Lac: Contemporaneous multifrequency observations of WISE J141046.00 + 740511.2

    Get PDF
    Context. The gamma-ray emitting source WISE J141046.00+740511.2 has been associated with a Fermi-LAT detection by crossmatching with Swift/XRT data. It has shown all the canonical observational characteristics of a BL Lac source, including a power-law, featureless optical spectrum. However, it was only recently detected at radio frequencies and its radio flux is significantly low. Aims. Given that a radio detection is fundamental to associate lower-energy counterparts to Fermi-LAT sources, we aim to unambiguously classify this source by performing a multiwavelength analysis based on contemporaneous data. Methods. By using multifrequency observations at the Jansky Very Large Array, Giant Metrewave Radio Telescope, Gran Telescopio Canarias, Gemini, William Herschel Telescope and Liverpool observatories, together with Fermi-LAT and Swift data, we carried out two kinds of analyses. On one hand, we studied several known parameters that account for the radio loudness or weakness characterization and their application to blazars (in general) and to our source (in particular). And, on the other hand, we built and analyzed the observed spectral energy distribution (SED) of this source to try to explain its peculiar characteristics. Results. The multiwavelength analysis indicates that WISE J141046.00+740511.2 is a blazar of the high-frequency peaked (HBL) type that emits highly polarized light and that is likely located at a low redshift. In addition, the one-zone model parameters that best fit its SED are those of an extreme HBL (EHBL); this blazar type has been extensively predicted in theory to be lacking in the radio emission that is otherwise typical of canonical gamma-ray blazars. Conclusions. We confirm that WISE J141046.00+740511.2 is indeed a highly polarized BL Lac of the HBL type. Further studies will be conducted to explain the atypical low radio flux detected for this source.Comment: accepted for publication in A&A, in pres

    Particle transport in magnetized media around black holes and associated radiation

    Get PDF
    Galactic black hole coronae are composed of a hot, magnetized plasma. The spectral energy distribution produced in this component of X-ray binaries can be strongly affected by different interactions between locally injected relativistic particles and the matter, radiation and magnetic fields in the source. We study the non-thermal processes driven by the injection of relativistic particles into a strongly magnetized corona around an accreting black hole. We compute in a self-consistent way the effects of relativistic bremsstrahlung, inverse Compton scattering, synchrotron radiation, and the pair-production/annihilation of leptons, as well as hadronic interactions. Our goal is to determine the non-thermal broadband radiative output of the corona. The set of coupled kinetic equations for electrons, positrons, protons, and photons are solved and the resulting particle distributions are computed self-consistently. The spectral energy distributions of transient events in X-ray binaries are calculated, as well as the neutrino production. We show that the application to Cygnus X-1 of our model of non-thermal emission from a magnetized corona yields a good fit to the observational data. Finally, we show that the accumulated signal produced by neutrino bursts in black hole coronae might be detectable for sources within a few kpc on timescales of years. Our work leads to predictions for non-thermal photon and neutrino emission generated around accreting black holes, that can be tested by the new generation of very high energy gamma-ray and neutrino instruments.Comment: 13 pages, 10 figures, accepted for publication in A&

    An extreme magneto-ionic environment associated with the fast radio burst source FRB 121102

    Get PDF
    Fast radio bursts are millisecond-duration, extragalactic radio flashes of unknown physical origin(1-3). The only known repeating fast radio burst source(4-6)-FRB 121102-has been localized to a star-forming region in a dwarf galaxy(7-9) at redshift 0.193 and is spatially coincident with a compact, persistent radio source(7,10). The origin of the bursts, the nature of the persistent source and the properties of the local environment are still unclear. Here we report observations of FRB 121102 that show almost 100 per cent linearly polarized emission at a very high and variable Faraday rotation measure in the source frame (varying from + 1.46 x 10(5) radians per square metre to + 1.33 x 10(5) radians per square metre at epochs separated by seven months) and narrow (below 30 microseconds) temporal structure. The large and variable rotation measure demonstrates that FRB 121102 is in an extreme and dynamic magneto-ionic environment, and the short durations of the bursts suggest a neutron star origin. Such large rotation measures have hitherto been observed(11,12) only in the vicinities of massive black holes (larger than about 10,000 solar masses). Indeed, the properties of the persistent radio source are compatible with those of a low-luminosity, accreting massive black hole(10). The bursts may therefore come from a neutron star in such an environment or could be explained by other models, such as a highly magnetized wind nebula(13) or supernova remnant(14) surrounding a young neutron star.</p

    Non-thermal processes around accreting galactic black holes

    No full text
    Context. Accreting black holes in galactic X-ray sources are surrounded by hot plasma. The innermost part of these systems is likely a corona with different temperatures for ions and electrons. In the so-called low-hard state, hot electrons Comptonize soft X-ray photons from the disk that partially penetrates the corona, producing emission up to ~150 keV, well beyond the expectations for an optically thick disk of maximum temperature ~107 K. However, sources such as Cygnus X-1 produce steady emission up to a few MeV, which is indicative of a non-thermal contribution to the spectral energy distribution. Aims. We study the radiative output produced by the injection of non-thermal (both electron and proton) particles in a magnetized corona around a black hole. Methods. Energy losses and maximum energies are estimated for all types of particles in a variety of models, characterized by different kinds of advection and relativistic proton content. Transport equations are solved for primary and secondary particles, and spectral energy distributions are determined and corrected by internal absorption. Results. We show that a local injection of non-thermal particles can account for the high energy excess observed in some sources, and we predict the existence of a high-energy bump at energies above 1 TeV, and typical luminosities of ~1033 erg s-1. Conclusions. High-energy instruments such as the future Cherenkov Telescope Array (CTA) can be used to probe the relativistic particle content of the coronae around galactic black holes

    Primordial black hole evolution in two-fluid cosmology

    No full text
    corecore