30 research outputs found
The emergence and current performance of a health research system: lessons from Guinea Bissau
<p>Abstract</p> <p>Background</p> <p>Little is known about how health research systems (HRS) in low-income countries emerge and evolve over time, and how this process relates to their performance. Understanding how HRSs emerge is important for the development of well functioning National Health Research Systems (NHRS). The aim of this study was to assess how the HRS in Guinea Bissau has emerged and evolved over time and how the present system functions.</p> <p>Methods</p> <p>We used a qualitative case-study methodology to explore the emergence and current performance of the HRS, using the NHRS framework. We reviewed documents and carried out 39 in-depth interviews, ranging from health research to policy and practice stakeholders. Using an iterative approach, we undertook a thematic analysis of the data.</p> <p>Results</p> <p>The research practices in Guinea Bissau led to the emergence of a HRS with both local and international links and strong dependencies on international partners and donors. The post-colonial, volatile and resource-dependent context, changes in donor policies, training of local researchers and nature of the research findings influenced how the HRS evolved. Research priorities have mostly been set by 'expatriate' researchers and focused on understanding and reducing child mortality. Research funding is almost exclusively provided by foreign donors and international agencies. The training of Guinean researchers started in the mid-nineties and has since reinforced the links with the health system, broadened the research agenda and enhanced local use of research. While some studies have made an important contribution to global health, the use of research within Guinea Bissau has been constrained by the weak and donor dependent health system, volatile government, top-down policies of international agencies, and the controversial nature of some of the research findings.</p> <p>Conclusions</p> <p>In Guinea Bissau a de facto 'system' of research has emerged through research practices and co-evolving national and international research and development dynamics. If the aim of research is to contribute to local decision making, it is essential to modulate the emerged system by setting national research priorities, aligning funding, building national research capacity and linking research to decision making processes. Donors and international agencies can contribute to this process by coordinating their efforts and aligning to national priorities.</p
Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease
Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.
Effects of alirocumab on types of myocardial infarction: insights from the ODYSSEY OUTCOMES trial
Aims The third Universal Definition of Myocardial Infarction (MI) Task Force classified MIs into five types: Type 1, spontaneous; Type 2, related to oxygen supply/demand imbalance; Type 3, fatal without ascertainment of cardiac biomarkers; Type 4, related to percutaneous coronary intervention; and Type 5, related to coronary artery bypass surgery. Low-density lipoprotein cholesterol (LDL-C) reduction with statins and proprotein convertase subtilisin–kexin Type 9 (PCSK9) inhibitors reduces risk of MI, but less is known about effects on types of MI. ODYSSEY OUTCOMES compared the PCSK9 inhibitor alirocumab with placebo in 18 924 patients with recent acute coronary syndrome (ACS) and elevated LDL-C (≥1.8 mmol/L) despite intensive statin therapy. In a pre-specified analysis, we assessed the effects of alirocumab on types of MI. Methods and results Median follow-up was 2.8 years. Myocardial infarction types were prospectively adjudicated and classified. Of 1860 total MIs, 1223 (65.8%) were adjudicated as Type 1, 386 (20.8%) as Type 2, and 244 (13.1%) as Type 4. Few events were Type 3 (n = 2) or Type 5 (n = 5). Alirocumab reduced first MIs [hazard ratio (HR) 0.85, 95% confidence interval (CI) 0.77–0.95; P = 0.003], with reductions in both Type 1 (HR 0.87, 95% CI 0.77–0.99; P = 0.032) and Type 2 (0.77, 0.61–0.97; P = 0.025), but not Type 4 MI. Conclusion After ACS, alirocumab added to intensive statin therapy favourably impacted on Type 1 and 2 MIs. The data indicate for the first time that a lipid-lowering therapy can attenuate the risk of Type 2 MI. Low-density lipoprotein cholesterol reduction below levels achievable with statins is an effective preventive strategy for both MI types.For complete list of authors see http://dx.doi.org/10.1093/eurheartj/ehz299</p
Effect of alirocumab on mortality after acute coronary syndromes. An analysis of the ODYSSEY OUTCOMES randomized clinical trial
Background: Previous trials of PCSK9 (proprotein convertase subtilisin-kexin type 9) inhibitors demonstrated reductions in major adverse cardiovascular events, but not death. We assessed the effects of alirocumab on death after index acute coronary syndrome. Methods: ODYSSEY OUTCOMES (Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab) was a double-blind, randomized comparison of alirocumab or placebo in 18 924 patients who had an ACS 1 to 12 months previously and elevated atherogenic lipoproteins despite intensive statin therapy. Alirocumab dose was blindly titrated to target achieved low-density lipoprotein cholesterol (LDL-C) between 25 and 50 mg/dL. We examined the effects of treatment on all-cause death and its components, cardiovascular and noncardiovascular death, with log-rank testing. Joint semiparametric models tested associations between nonfatal cardiovascular events and cardiovascular or noncardiovascular death. Results: Median follow-up was 2.8 years. Death occurred in 334 (3.5%) and 392 (4.1%) patients, respectively, in the alirocumab and placebo groups (hazard ratio [HR], 0.85; 95% CI, 0.73 to 0.98; P=0.03, nominal P value). This resulted from nonsignificantly fewer cardiovascular (240 [2.5%] vs 271 [2.9%]; HR, 0.88; 95% CI, 0.74 to 1.05; P=0.15) and noncardiovascular (94 [1.0%] vs 121 [1.3%]; HR, 0.77; 95% CI, 0.59 to 1.01; P=0.06) deaths with alirocumab. In a prespecified analysis of 8242 patients eligible for ≥3 years follow-up, alirocumab reduced death (HR, 0.78; 95% CI, 0.65 to 0.94; P=0.01). Patients with nonfatal cardiovascular events were at increased risk for cardiovascular and noncardiovascular deaths (P<0.0001 for the associations). Alirocumab reduced total nonfatal cardiovascular events (P<0.001) and thereby may have attenuated the number of cardiovascular and noncardiovascular deaths. A post hoc analysis found that, compared to patients with lower LDL-C, patients with baseline LDL-C ≥100 mg/dL (2.59 mmol/L) had a greater absolute risk of death and a larger mortality benefit from alirocumab (HR, 0.71; 95% CI, 0.56 to 0.90; Pinteraction=0.007). In the alirocumab group, all-cause death declined wit h achieved LDL-C at 4 months of treatment, to a level of approximately 30 mg/dL (adjusted P=0.017 for linear trend). Conclusions: Alirocumab added to intensive statin therapy has the potential to reduce death after acute coronary syndrome, particularly if treatment is maintained for ≥3 years, if baseline LDL-C is ≥100 mg/dL, or if achieved LDL-C is low. Clinical Trial Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT01663402
Using the fourth dimension to distinguish between structures for anisotropic diffusion filtering in 4D CT perfusion scans
High resolution 4D (3D+time) cerebral CT perfusion (CTP) scans can be used to create 3D arteriograms (showing only arteries) and venograms (only veins). However, due to the low X-ray radiation dose used for acquiring the CTP scans, they are inherently noisy. In this paper, we propose a time intensity profile similarity (TIPS) anisotropic diffusion method that uses the 4th dimension to distinguish between structures, for reducing noise and enhancing arteries and veins in 4D CTP scans. The method was evaluated on 20 patient CTP scans. An observer study was performed by two radiologists, assessing the arteries and veins in arteriograms and venograms derived from the filtered CTP data, compared to those derived from the original data. Results showed that arteriograms and venograms derived from the filtered CTP data showed more and better visualized small arteries and veins in the majority of the 20 evaluated CTP scans. In conclusion, arteries and veins are separately enhanced and noise is reduced by using the time-intensity profile similarity (fourth dimension) to distinguish between structures for anisotropic diffusion filtering in 4D CT perfusion scans
Developmental differences in the brain response to unhealthy food cues : An fMRI study of children and adults
Background: Food cues are omnipresent and may trigger overconsumption. In the past 2 decades, the prevalence of childhood obesity has increased dramatically. Because children's brains are still developing, especially in areas important for inhibition, children may be more susceptible than adults to tempting food cues. Objective: We examined potential developmental differences in children's and adults' responses to food cues to determine how these responses relate to weight status. Design: We included 27 children aged 10-12 y and 32 adults aged 32-52 y. Functional magnetic resonance imaging data were acquired during a food-viewing task in which unhealthy and healthy food pictures were presented. Results: Children had a stronger activation in the left precentral gyrus than did adults in response to unhealthy compared with healthy foods. In children, unhealthy foods elicited stronger activation in the right inferior temporal and middle occipital gyri, left precentral gyrus, bilateral opercular part of the inferior frontal gyrus, left hippocampus, and left middle frontal gyrus. Adults had stronger activation in the bilateral middle occipital gyrus and the right calcarine sulcus for unhealthy compared with healthy foods. Children with a higher body mass index (BMI) had lower activation in the bilateral dorsolateral prefrontal cortex while viewing unhealthy compared with healthy foods. In adults there was no correlation between BMI and neural response to unhealthy compared with healthy foods. Conclusions: Unhealthy foods might elicit more attention both in children and in adults. Children had stronger activation while viewing unhealthy compared with healthy foods in areas involved in reward, motivation, and memory. Furthermore, children activated a motivation and reward area located in the motor cortex more strongly than did adults in response to unhealthy foods. Finally, children with a higher BMI had less activation in inhibitory areas in response to unhealthy foods, which may mean they are more susceptible to tempting food cues.</p
Developmental differences in the brain response to unhealthy food cues : An fMRI study of children and adults
BACKGROUND: Food cues are omnipresent and may trigger overconsumption. In the past 2 decades, the prevalence of childhood obesity has increased dramatically. Because children's brains are still developing, especially in areas important for inhibition, children may be more susceptible than adults to tempting food cues. OBJECTIVE: We examined potential developmental differences in children's and adults' responses to food cues to determine how these responses relate to weight status. DESIGN: We included 27 children aged 10-12 y and 32 adults aged 32-52 y. Functional magnetic resonance imaging data were acquired during a food-viewing task in which unhealthy and healthy food pictures were presented. RESULTS: Children had a stronger activation in the left precentral gyrus than did adults in response to unhealthy compared with healthy foods. In children, unhealthy foods elicited stronger activation in the right inferior temporal and middle occipital gyri, left precentral gyrus, bilateral opercular part of the inferior frontal gyrus, left hippocampus, and left middle frontal gyrus. Adults had stronger activation in the bilateral middle occipital gyrus and the right calcarine sulcus for unhealthy compared with healthy foods. Children with a higher body mass index (BMI) had lower activation in the bilateral dorsolateral prefrontal cortex while viewing unhealthy compared with healthy foods. In adults there was no correlation between BMI and neural response to unhealthy compared with healthy foods. CONCLUSIONS: Unhealthy foods might elicit more attention both in children and in adults. Children had stronger activation while viewing unhealthy compared with healthy foods in areas involved in reward, motivation, and memory. Furthermore, children activated a motivation and reward area located in the motor cortex more strongly than adults did in response to unhealthy foods. Finally, children with a higher BMI had less activation in inhibitory areas in response to unhealthy foods, which may mean they are more susceptible to tempting food cues. This trial was registered at www.trialregister.nl as NTR4255
Early detection of small volume stroke and thromboembolic sources with computed tomography: Rationale and design of the ENCLOSE study
Background: Computed tomography is the most frequently used imaging modality in acute stroke imaging protocols. Detection of small volume infarcts in the brain and cardioembolic sources of stroke is difficult with current computed tomography protocols. Furthermore, the role of computed tomography findings to predict recurrent ischemic stroke is unclear. With ENCLOSE, we aim to improve (1) the detection of small volume infarcts with thin slice computed tomography perfusion (CTP) images and thromboembolic source with cardiac computed tomography techniques in the acute stage of ischemic stroke and (2) prediction of recurrent ischemic stroke with computed tomography-derived predictors. Methods/design: ENCLOSE is a prospective multicenter observational cohort study, which will be conducted in three Dutch stroke centers (ClinicalTrials.gov Identifier: NCT04019483). Patients (≥18 years) with suspected acute ischemic stroke who undergo computed tomography imaging within 9 h after symptom onset are eligible. Computed tomography imaging includes non-contrast CT, CTP, and computed tomography angiography (CTA) from base of the heart to the top of the brain. Dual-energy CT data will be acquired when possible, and thin-slice CTP reconstructions will be obtained in addition to standard 5 mm CTP data. CTP data will be processed with commercially available software and locally developed model-based methods. The post-processed thin-slice CTP images will be compared to the standard CTP images and to magnetic resonance diffusion-weighted imaging performed within 48 h after admission. Detection of cardioembolic sources of stroke will be evaluated on the CTA images. Recurrence will be evaluated 90 days and two years after the index event. The added value of imaging findings to prognostic models for recurrent ischemic stroke will be evaluated. Conclusion: The aim of ENCLOSE is to improve early detection of small volume stroke and thromboembolic sources and to improve prediction of recurrence in patients with acute ischemic stroke
Pre-existent vertebral rotation in the human spine is influenced by body position
Both the humans as well as the quadrupedal spine have been shown to exhibit a pattern of pre-existent rotation that is similar in direction to what is found in the most common types of idiopathic scoliosis. It has been postulated that human bipedalism introduces forces to the spine that increase a tendency of the vertebrae to rotate. The objective of this study was to examine the effect of body position on vertebral rotation in vivo. Thirty asymptomatic volunteers underwent magnetic resonance imaging scanning of the spine (T2–L5) in three different body positions; upright, quadrupedal-like (on hands-and-knees) and supine. Vertebral rotation in the local transverse plane was measured according to a pre-established method and compared at different spinal levels between the three body positions. It was shown that in all three positions the mid- and lower thoracic vertebrae were predominantly rotated to the right. However, vertebral rotation was significantly less in the quadrupedal position than in both the standing upright and supine positions