63 research outputs found
Building a Robust, Densely-Sampled Spider Tree of Life for Ecosystem Research
Phylogenetic relatedness is a key diversity measure for the analysis and understanding of how species and communities evolve across time and space. Understanding the nonrandom loss of species with respect to phylogeny is also essential for better-informed conservation decisions. However, several factors are known to influence phylogenetic reconstruction and, ultimately, phylogenetic diversity metrics. In this study, we empirically tested how some of these factors (topological constraint, taxon sampling, genetic markers and calibration) affect phylogenetic resolution and uncertainty. We built a densely sampled, species-level phylogenetic tree for spiders, combining Sanger sequencing of species from local communities of two biogeographical regions (Iberian Peninsula and Macaronesia) with a taxon-rich backbone matrix of Genbank sequences and a topological constraint derived from recent phylogenomic studies. The resulting tree constitutes the most complete spider phylogeny to date, both in terms of terminals and background information, and may serve as a standard reference for the analysis of phylogenetic diversity patterns at the community level. We then used this tree to investigate how partial data affect phylogenetic reconstruction, phylogenetic diversity estimates and their rankings, and, ultimately, the ecological processes inferred for each community. We found that the incorporation of a single slowly evolving marker (28S) to the DNA barcode sequences from local communities, had the highest impact on tree topology, closely followed by the use of a backbone matrix. The increase in missing data resulting from combining partial sequences from local communities only had a moderate impact on the resulting trees, similar to the difference observed when using topological constraints. Our study further revealed substantial differences in both the phylogenetic structure and diversity rankings of the analyzed communities estimated from the different phylogenetic treatments, especially when using non-ultrametric trees (phylograms) instead of time-stamped trees (chronograms). Finally, we provide some recommendations on reconstructing phylogenetic trees to infer phylogenetic diversity within ecological studies
Building a Robust, Densely-Sampled Spider Tree of Life for Ecosystem Research
Phylogenetic relatedness is a key diversity measure for the analysis and understanding of how species and communities evolve across time and space. Understanding the nonrandom loss of species with respect to phylogeny is also essential for better-informed conservation decisions. However, several factors are known to influence phylogenetic reconstruction and, ultimately, phylogenetic diversity metrics. In this study, we empirically tested how some of these factors (topological constraint, taxon sampling, genetic markers and calibration) affect phylogenetic resolution and uncertainty. We built a densely sampled, species-level phylogenetic tree for spiders, combining Sanger sequencing of species from local communities of two biogeographical regions (Iberian Peninsula and Macaronesia) with a taxon-rich backbone matrix of Genbank sequences and a topological constraint derived from recent phylogenomic studies. The resulting tree constitutes the most complete spider phylogeny to date, both in terms of terminals and background information, and may serve as a standard reference for the analysis of phylogenetic diversity patterns at the community level. We then used this tree to investigate how partial data affect phylogenetic reconstruction, phylogenetic diversity estimates and their rankings, and, ultimately, the ecological processes inferred for each community. We found that the incorporation of a single slowly evolving marker (28S) to the DNA barcode sequences from local communities, had the highest impact on tree topology, closely followed by the use of a backbone matrix. The increase in missing data resulting from combining partial sequences from local communities only had a moderate impact on the resulting trees, similar to the difference observed when using topological constraints. Our study further revealed substantial differences in both the phylogenetic structure and diversity rankings of the analyzed communities estimated from the different phylogenetic treatments, especially when using non-ultrametric trees (phylograms) instead of time-stamped trees (chronograms). Finally, we provide some recommendations on reconstructing phylogenetic trees to infer phylogenetic diversity within ecological studies
Species conservation profiles of cave-dwelling arthropods from Azores, Portugal
Background Azorean volcanic cave biodiversity is under considerable pressure due to ongoing threats of pollution, land use change, touristic activities or climate change. In this contribution, we present the IUCN Red List profiles of 15 cave-adapted arthropod species, endemic to the Azorean archipelago, including species belonging to the speciose genus Trechus (Carabidae), which is represented in Azores by seven species. The objective of this paper is to assess all endemic Azorean cave-adapted species and advise on possible future research and conservation actions critical for the long-term survival of the most endangered species. New information Most species have a restricted distribution (i.e. occur in one or two caves), very small extent of occurrence (EOO) and a small area of occupancy (AOO). A continuing decline in the number of mature individuals is inferred from the ongoing cave habitat degradation. The two troglobitic species of the homopteran genus Cixius are in great danger of extinction due to major land-use changes in epigean habitats above their known localities. We suggest, as future measures of conservation, the regular monitoring of the species (every five years), the creation of additional protected caves, the limitation of several aggressive activities around the caves (e.g. decreasing pasture intensification) and in some cases the creation of fences in the entrance of the most important caves.Peer reviewe
Taxonomic and functional diversity of insect herbivore assemblages associated with the canopy-dominant trees of the Azorean native forest.
Oceanic islands have been providing important insights on the structuring of ecological communities and, under the context of the present biodiversity crisis, they are paramount to assess the effects of biological invasions on community assembly. In this study we compare the taxonomic and functional diversity of insect herbivore assemblages associated with the dominant tree species of Azorean native forests and investigate the ecological processes that may have originated current patterns of plant-herbivore associations. Five dominant trees?Erica azorica, Ilex perado subsp. azorica, Juniperus brevifolia, Laurus azorica and Vaccinium cylindraceum?were sampled in the remnants of the native forest of Terceira Island (Azores) using a standardised methodology. The taxonomic and functional diversity of insect herbivore assemblages was assessed using complementary metrics and beta diversity partitioning analysis (species replacement and richness differences) aiming to evaluate the variation in insect herbivore assemblages within and between the study plant species. Sixty two insect species, mostly bugs (Hemiptera) and caterpillars (Lepidoptera), were found in the five study plants with indigenous (endemic and native non-endemic) insects occurring with higher species richness and abundance than introduced ones. Species replacement was the most important component of insect herbivore taxonomic beta diversity while differences in trait richness played a major role on functional beta diversity. The endemic E. azorica stands out from the other study plants by having associated a very distinct insect herbivore assemblage with a particular set of functional attributes, mainly composed by large bodied and long shaped species that feed by chewing. Despite the progressive biotic homogenization witnessed in the Azores during the last few decades, several strong associations between the endemic trees and their indigenous insect herbivores remain
A conservation roadmap for the subterranean biome
The 15th UN Convention on Biological Diversity (CBD) (COP15) will be held in Kunming, China in October 2021. Historically, CBDs and other multilateral treaties have either alluded to or entirely overlooked the subterranean biome. A multilateral effort to robustly examine, monitor, and incorporate the subterranean biome into future conservation targets will enable the CBD to further improve the ecological effectiveness of protected areas by including groundwater resources, subterranean ecosystem services, and the profoundly endemic subsurface biodiversity. To this end, we proffer a conservation roadmap that embodies five conceptual areas: (1) science gaps and data management needs; (2) anthropogenic stressors; (3) socioeconomic analysis and conflict resolution; (4) environmental education; and (5) national policies and multilateral agreements.Peer reviewe
MAMMALS IN PORTUGAL : A data set of terrestrial, volant, and marine mammal occurrences in P ortugal
Mammals are threatened worldwide, with 26% of all species being includedin the IUCN threatened categories. This overall pattern is primarily associatedwith habitat loss or degradation, and human persecution for terrestrial mam-mals, and pollution, open net fishing, climate change, and prey depletion formarine mammals. Mammals play a key role in maintaining ecosystems func-tionality and resilience, and therefore information on their distribution is cru-cial to delineate and support conservation actions. MAMMALS INPORTUGAL is a publicly available data set compiling unpublishedgeoreferenced occurrence records of 92 terrestrial, volant, and marine mam-mals in mainland Portugal and archipelagos of the Azores and Madeira thatincludes 105,026 data entries between 1873 and 2021 (72% of the data occur-ring in 2000 and 2021). The methods used to collect the data were: live obser-vations/captures (43%), sign surveys (35%), camera trapping (16%),bioacoustics surveys (4%) and radiotracking, and inquiries that represent lessthan 1% of the records. The data set includes 13 types of records: (1) burrowsjsoil moundsjtunnel, (2) capture, (3) colony, (4) dead animaljhairjskullsjjaws, (5) genetic confirmation, (6) inquiries, (7) observation of live animal (8),observation in shelters, (9) photo trappingjvideo, (10) predators dietjpelletsjpine cones/nuts, (11) scatjtrackjditch, (12) telemetry and (13) vocalizationjecholocation. The spatial uncertainty of most records ranges between 0 and100 m (76%). Rodentia (n=31,573) has the highest number of records followedby Chiroptera (n=18,857), Carnivora (n=18,594), Lagomorpha (n=17,496),Cetartiodactyla (n=11,568) and Eulipotyphla (n=7008). The data setincludes records of species classified by the IUCN as threatened(e.g.,Oryctolagus cuniculus[n=12,159],Monachus monachus[n=1,512],andLynx pardinus[n=197]). We believe that this data set may stimulate thepublication of other European countries data sets that would certainly contrib-ute to ecology and conservation-related research, and therefore assisting onthe development of more accurate and tailored conservation managementstrategies for each species. There are no copyright restrictions; please cite thisdata paper when the data are used in publications.info:eu-repo/semantics/publishedVersio
ATLANTIC BIRDS: a data set of bird species from the Brazilian Atlantic Forest
South America holds 30% of the world's avifauna, with the Atlantic Forest representing one of the richest regions of the Neotropics. Here we have compiled a data set on Brazilian Atlantic Forest bird occurrence (150,423) and abundance samples (N = 832 bird species; 33,119 bird individuals) using multiple methods, including qualitative surveys, mist nets, point counts, and line transects). We used four main sources of data: museum collections, on-line databases, literature sources, and unpublished reports. The data set comprises 4,122 localities and data from 1815 to 2017. Most studies were conducted in the Florestas de Interior (1,510 localities) and Serra do Mar (1,280 localities) biogeographic sub-regions. Considering the three main quantitative methods (mist net, point count, and line transect), we compiled abundance data for 745 species in 576 communities. In the data set, the most frequent species were Basileuterus culicivorus, Cyclaris gujanensis, and Conophaga lineata. There were 71 singletons, such as Lipaugus conditus and Calyptura cristata. We suggest that this small number of records reinforces the critical situation of these taxa in the Atlantic Forest. The information provided in this data set can be used for macroecological studies and to foster conservation strategies in this biodiversity hotspot. No copyright restrictions are associated with the data set. Please cite this Data Paper if data are used in publications and teaching events. © 2017 by the Ecological Society of Americ
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4
While the increasing availability of global databases on ecological communities has advanced our knowledge
of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In
the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of
Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus
crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced
environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian
Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by
2050. This means that unless we take immediate action, we will not be able to establish their current status,
much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio
- …