12 research outputs found
b-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression
Glutamate is the principal excitatory neurotransmitter in the nervous system. Inactivation of synaptic glutamate is handled by the glutamate transporter GLT1 (also known as EAAT2; refs 1, 2), the physiologically dominant astroglial protein. In spite of its critical importance in normal and abnormal synaptic activity, no practical pharmaceutical can positively modulate this protein. Animal studies show that the protein is important for normal excitatory synaptic transmission, while its dysfunction is implicated in acute and chronic neurological disorders, including amyotrophic lateral sclerosis (ALS) 3 , stroke 4 , brain tumours 5 and epilepsy To identify compounds capable of increasing rodent GLT1 expression, a structurally diverse library of 1,040 FDA-approved drugs and nutritionals were individually added to organotypic spinal cord slice cultures prepared from postnatal day 9 rats To better understand the mechanism of action, the effect of the drugs on the GLT1 promoter was examined in cell lines fro
Genetic and functional studies of a missense variant in a glutamate transporter, SLC1A3, in Tourette syndrome
OBJECTIVE: Abnormalities in neurotransmission within the cortico-striatal-thalamo-cortical circuitry are implicated in the pathogenesis of Tourette syndrome. Glutamate is a major excitatory neurotransmitter and an important member in the cortico-striatal-thalamo-cortical circuitry. To explore the role of glutamatergic neurotransmission in genetic susceptibility of Tourette syndrome, we carried out the genetic and functional characterization of sequence variants in SLC1A3 gene, which encodes the main glutamate transporter in astrocytes in individuals with well-characterized Tourette syndrome (n=256) and normal controls (n=224). METHODS: Exon-containing regions of SLC1A3 gene were screened using capillary electrophoresis-single strand conformation polymorphism followed by direct sequencing. Sequence variants were genotyped by restriction enzyme digestion and studied using glutamate uptake assay and membrane protein pull-down for transporter function. RESULTS: A missense variant involving a highly conserved residue, E219D, was identified in 11 heterozygous individuals with Tourette syndrome and four in the controls. The allele frequency for E219D was 2.4 folds higher in the Tourette syndrome (0.022) compared with the control cohort (0.009) although the difference did not reach statistical significance in the current cohorts (P=0.09). A H-glutamate-uptake assay showed that E219D conveys a significant increase (1.66 fold) in the SLC1A3-mediated glutamate uptake in HEK293 cells. A biotin-mediated membrane pull-down analysis showed a similar increase (1.5 fold) of mutant SLC1A3 protein in the membrane fraction of transfected HEK293 cells compared with that in the wild type controls. CONCLUSION: These results indicate that E219D is a functional SLC1A3 variant that is presented in a small number of individuals with Tourette syndrome. Further studies on possible changes in glutamate transport in the pathogenesis of Tourette syndrome are warranted
RNA Toxicity from the ALS/FTD C9ORF72 Expansion Is Mitigated by Antisense Intervention
A hexanucleotide GGGGCC repeat expansion in the noncoding region of the C9ORF72 gene is the most common genetic abnormality in familial and sporadic amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The function of the C9ORF72 protein is unknown, as is the mechanism by which the repeat expansion could cause disease. Induced pluripotent stem cell (iPSC)-differentiated neurons from C9ORF72 ALS patients revealed disease-specific (1) intranuclear GGGGCCexp RNA foci, (2) dysregulated gene expression, (3) sequestration of GGGGCCexp RNA binding protein ADARB2, and (4) susceptibility to excitotoxicity. These pathological and pathogenic characteristics were confirmed in ALS brain and were mitigated with antisense oligonucleotide (ASO) therapeutics to the C9ORF72 transcript or repeat expansion despite the presence of repeat-associated non-ATG translation (RAN) products. These data indicate a toxic RNA gain-of-function mechanism as a cause of C9ORF72 ALS and provide candidate antisense therapeutics and candidate human pharmacodynamic markers for therapy
Molecularly defined cortical astroglia subpopulation modulates neurons via secretion of Norrin
Despite expanding knowledge regarding the role of astroglia in regulating neuronal function, little is known about regional or functional subgroups of brain astroglia and how they may interact with neurons. We use an astroglia-specific promoter fragment in transgenic mice to identify an anatomically defined subset of adult gray matter astroglia. Using transcriptomic and histological analyses, we generate a combinatorial profile for the in vivo identification and characterization of this astroglia subpopulation. These astroglia are enriched in mouse cortical layer V; express distinct molecular markers, including Norrin and leucine-rich repeat-containing G-protein-coupled receptor 6 (LGR6), with corresponding layer-specific neuronal ligands; are found in the human cortex; and modulate neuronal activity. Astrocytic Norrin appears to regulate dendrites and spines; its loss, as occurring in Norrie disease, contributes to cortical dendritic spine loss. These studies provide evidence that human and rodent astroglia subtypes are regionally and functionally distinct, can regulate local neuronal dendrite and synaptic spine development, and contribute to disease
The C9orf72 repeat expansion disrupts nucleocytoplasmic transport
The hexanucleotide repeat expansion (HRE) GGGGCC (G4C2) in C9orf72 is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Recent studies support an HRE RNA gain-of-function mechanism of neurotoxicity, and we previously identified protein interactors for the G4C2 RNA including RanGAP1. A candidate-based genetic screen in Drosophila expressing 30 G4C2 repeats identified RanGAP (Drosophila orthologue of human RanGAP1), a key regulator of nucleocytoplasmic transport, as a potent suppressor of neurodegeneration. Enhancing nuclear import or suppressing nuclear export of proteins also suppresses neurodegeneration. RanGAP physically interacts with HRE RNA and is mislocalized in HRE-expressing flies, neurons from C9orf72 ALS patient-derived induced pluripotent stem cells (iPSC-derived neurons), and in C9orf72 ALS patient brain tissue. Nuclear import is impaired as a result of HRE expression in the fly model and in C9orf72 iPSC-derived neurons, and these deficits are rescued by small molecules and antisense oligonucleotides targeting the HRE G-quadruplexes. Nucleocytoplasmic transport defects may be a fundamental pathway for ALS and FTD that is amenable to pharmacotherapeutic intervention