370 research outputs found

    An overview of Forward Dynamics Algorithms and their use in Open Source Dynamics Engines

    Get PDF
    Simulation of real-world dynamics is of major importance in testing and verifying developed industrial concepts and solutions, developing and verifying potential control paradigms, scientific research, learning and training tools, or the entertainment industry as a basis for a game engine. The module of the 3D virtual simulator that achieves simulation of the real-world behaviour such as rigid and elastic body dynamics, particle dynamics, fluid dynamics, electrodynamics, magnetism, etc., is often referred to as a dynamics engine or physics engine. The core of the rigid body dynamics (physics) engine is the solution to the forward dynamics problem, which is defined as finding a rigid body's path, velocity, and acceleration for a given input actuating torque and external forces. The past few decades saw a considerable amount of research in robot dynamics modelling, and there are many methods for robot dynamic model development available in the literature. The most commonly used algorithms for solving robot forward dynamics problem are the Composite-Rigid-Body Algorithm (CRBA) [1] and the Articulated-Body Algorithm (ABA) [2]. CRBA and ABA are reduced coordinate methods where known constraints, such as joints, are embedded in the formulation of the equations of motion. Besides reduced coordinate methods, there are maximal coordinate methods using Lagrange multipliers [3-4] to enforce constraints using constraint reaction forces

    Impact of Short-Term Variations in the Generation Output of Geographically Dispersed PV Systems

    Get PDF
    When viewed in hourly intervals, a solar photovoltaic (PV) system appears to have a more stable output than usual. However, there are short-term rapid variations in its generation output that result from transient cloudiness and weather disturbances in the atmosphere. By using Monte Carlo simulations applied to a Markov model, this study demonstrates the short-term intermittency of the transient weather conditions and estimates the generation of geographically dispersed PV systems with a capacity of ten percent of peak demand of a statewide grid in one-minute intervals. This study found that geographically distributed PV systems evaluated in one-minute intervals could cope with peaks of a statewide power grid because of the smoothing effect caused by the geographical spread. The purpose of the exercise is to create a framework for integration and optimization of multiple generation sources in order to meet the uncertainty of the fast changing PV output under certain weather conditions.

    Performance of the WaveBurst algorithm on LIGO data

    Full text link
    In this paper we describe the performance of the WaveBurst algorithm which was designed for detection of gravitational wave bursts in interferometric data. The performance of the algorithm was evaluated on the test data set collected during the second LIGO Scientific run. We have measured the false alarm rate of the algorithm as a function of the threshold and estimated its detection efficiency for simulated burst waveforms.Comment: proceedings of GWDAW, 2003 conference, 13 pages, 6 figure
    • 

    corecore