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Abstract 
When viewed in hourly intervals, a solar 

photovoltaic (PV) system appears to have a more stable 
output than usual. However, there are short-term rapid 
variations in its generation output that result from 
transient cloudiness and weather disturbances in the 
atmosphere. By using Monte Carlo simulations applied 
to a Markov model, this study demonstrates the short-
term intermittency of the transient weather conditions 
and estimates the generation of geographically 
dispersed PV systems with a capacity of ten percent of 
peak demand of a statewide grid in one-minute intervals. 
This study found that geographically distributed PV 
systems evaluated in one-minute intervals could cope 
with peaks of a statewide power grid because of the 
smoothing effect caused by the geographical spread. The 
purpose of the exercise is to create a framework for 
integration and optimization of multiple generation 
sources in order to meet the uncertainty of the fast 
changing PV output under certain weather conditions. 

1. Introduction  
 

As renewable energy becomes one of the most 
popular new addition to the energy mix of many utilities 
around the world, trends in planning of generation are 
shifting focus from peak load to net load and system 
energy [1]. The pressure of variability of renewable 
generation resources is creating additional complexity 
on the non-renewable portion of the generation portfolio, 
with a consequence of a net increase of operating costs. 
Solutions to the overall problem of net load are found (in 
smaller systems) in combination of energy storage, 
demand response (or demand side management), and 
maintaining a sufficient amount of spinning reserve in 
the energy mix to accommodate the worst case scenarios 
of renewable generation variability. An analysis  of the 
National Renewable Energy Laboratory (NREL) of large 
scale renewable penetration and area-to-area variability 
in hour and sub-hour time frames suggests that 

geographic diversity of the wind and solar plants ensures 
that the extreme changes in generation never occur (tested 
on a limited data set from 2006) [2]. Simple rules have been 
proposed in that report to accommodate for sub-hourly 
renewable generation variability. 

 
In this paper, we are addressing two approaches to 

studying the impact of renewable generation variability on 
grid operation and planning. The first approach attempts to 
model the short-time resolution (sub-hour to minute level) 
of individual and geographically dispersed solar PV 
systems. A Markov weather model is built from 
measurement data and its performance is evaluated by 
stochastic simulations. 

To quantify differences between production patterns, 
we propose two complementary approaches. The first is 
based on multiresoluton covariances that utilize non-
decimated wavelet transforms [17] of the production 
patterns and that enable scale-dependent assessment of 
similarity/dissimilarity. The choice of nondecimated 
(stationary, maximum overlap) transforms is motivated by 
the fact that such transforms allow for arbitrary-sized 
inputs and preserve the time-locality across the 
multiresolution levels. As a result, such wavelet-defined 
covariances are capable of assessing similarity at various 
time scales/levels simultaneously. In addition, with such 
transforms, the monitoring of level-covariances or level-
correlations can be carried out in real time.  

The second approach involves analysis of normalized 
production patterns that can be thought of as probability 
densities.  Distance measures between densities quantify 
their shape differences and capacity for stable outputs. We 
consider popular measures such as Hellinger, Kullback-
Leibler, and Divergence distances, [19], and demonstrate 
that they increase in magnitude when the spatial distance 
between the stations increases. 

2. Problem Statement 
 

The objective of this study is to (a) synthesize the short-
term, particularly in minute resolution, variation in the 
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generation output of PV systems geographically 
dispersed across representative sites of a statewide grid 
and (b) assess the effect of PV systems on the operation 
of a statewide grid. For this purpose, this study performs 
a Markov chain Monte Carlo (MCMC) simulation 
because the output of PV systems shows a Markovian 
dependence. In other words, their output depends only 
on the current state and not on the previous history. We 
emphasize that generalizations are possible and readily 
implementable. The Markov chain can be of 𝑘th order, 
meaning that in addition to the current state, (𝑘 − 1) 
previous states would determine the future state. 

With some expense in computational complexity, 
we can also define time-dependent transition 
probabilities and simulate the system via continuous 
time Markov chain transitions. 

3. Markov Chain Monte Carlo 
 
For n states, a transition probability of the first-order 

Markov chain process can be formulated through the 
following equation [1]: 

 
𝑃 𝑋 𝑡 + 1 = 𝑗 𝑋(𝑡) = 𝑖 = 𝑃-., 𝑖, 𝑗 = 1,⋯ , 𝑛				(1) 

 
All the transition probabilities, which are constant in 
time, can be represented by the n × n matrix: 
 

𝑃 = 	
𝑝44 ⋯ 𝑝45
⋮ ⋱ ⋮
𝑝54 ⋯ 𝑝55

                                                (2) 

 
where 𝑛 is the total number of states. Since the sum of 
all transition probabilities from a single state to any other 
state is equal to one, the sum of each row in (2) is unity. 
That is, 

𝑝-. = 1
5

.84

,					𝑖 = 1, 2,⋯ , 𝑛.																																								(3) 

The cumulative distribution function of state m can be 
expressed:  

𝐹=. = 	 𝑝=>

=

>84

,										𝑚, 𝑗 = 1, 2,⋯ , 𝑛.																			(4) 

After determining the transition probability matrix, we 
propose to perform a Monte Carlo simulation of the 
Markov chain model. Uniformly distributed random 
sampling of a transition from a current state to the next 
state is proposed in [2-5]. This study applies this random 
sampling to the proposed MCMC simulation that 
synthesizes rapid variations in the generation output of 
geographically distributed PV systems in minute 
intervals. If a uniformly generated random number, 𝑈, 

falls within the boundaries of the cumulative probabilities 
of states (𝑗 − 1) and 𝑗, this study selects state 𝑗 as the next 
state from current state I, i.e., 

 
𝑗 = 𝑘	   if  𝐹-,>B4 < 𝑈 ≤ 𝐹-,> 

 
where  𝑈~	𝑈𝑛𝑖𝑓 0,1 ,	and 𝐹-,H = 0, and 𝐹-,5 = 1. 
 

4. Case Study 
A. Large PV Systems Connected to a Statewide Grid 

As an example, we use a simulated case study of a set of 
19 solar PV plants distributed across Georgia, USA (Figure 
1). To synthesize the short-term variation in the generation 
output of large PV systems connected to a statewide grid, 
this study estimates their output in hourly and minute-by-
minute resolutions. In hourly resolution, it is assumed that 
all PV systems are geographically dispersed across the 
representative 19 sites across Georgia and have the 
capacity equal to 10% of the total peak demand, or 17.152 
GW in 2010 [6]. The disposition of the cluster of solar 
farms is depicted in Figure 1. To produce 10% of the peak 
demand, multiple PV systems oriented at an azimuth of 
180° (facing south) and a tilt angle of 30° (approximate 
geographic latitude) are installed in multiple locations. The 
capacity of the PV systems in each site is chosen to be 
proportional to the population of each site in 2011 [7].  
 

 
Figure 1. PV systems dispersed throughout 19 sites across Georgia [7]. 
 
For example, since 77,683 people populate in the Albany 
area in Georgia in 2011 [8], which is 5.23% of the total 
number of population of the 19 sites, the PV systems 
installed in the Albany area are assumed to be 5.25% of the 
total capacity of the PV systems dispersed through the 19 
sites of the state. This is roughly consistent with the 
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assumption that certain fraction of the homeowners 
would choose to install PV systems on the roofs of their 
residences. 
 

 
Figure 2. Illustration of the Markov chain model of transition 
probabilities of changes in solar radiation. Resolution is determined by 
the size of ranges of the final transition state. 
 

 
Figure 3. Representation [13] of the transition probability matrix of the 
Markov chain model of solar intensity transitions in resolution of 0.1%. 
Only 2.117% of the transition coefficients are non-zero. 
 

B. Short-Term Intermittency of the PV System 
This study collected hourly solar data to estimate the 

generation output of the PV systems installed on the 19 
sites of the state. Unfortunately, solar data in minute 
intervals for the state are not available from the current 
national solar radiation database [9]. Rapid variations in 
short-term, typically minute-averaging resolution, PV 
generation result from transient cloudiness and weather 
disturbances in the atmosphere [10]. Since current PV 

generation affected by transient cloudiness depends only 
on previous generation, rapid variations in PV generation 
can be modeled by optimized Markov chain methods [2, 4, 
11]. Thus, to model the short-term intermittency of the 
transient cloudiness of the state, this study uses a Markov 
chain Monte Carlo (MCMC) simulation [7, 10, 12].  

C. Markov Chain Monte Carlo Simulation for PV 
Systems Dispersed across Georgia 
To calculate the transition probability matrix required 

as input data for a MCMC simulation, we collect a sample 
of actual solar data in minute-by-minute resolution from 
nine test sites located in Colorado, Arizona, New Mexico, 
and Utah from 2008 to 2012 (see Figure 4) [13], and 
estimate their PV outputs in minute intervals, using 
PV_LIB [14]. For example, on August 23, if a 1.4 MW PV 
system (with Canadian Solar CS5P-220M modules and a 
1.4 MW Siemens inverter) were installed in each nine site, 
they could show short-term variations in their generation 
output, as shown in Figure 5. Figure 6 presents the 
synthesized generation output of the PV systems by 
summing their generation output. This study calculated the 
transition probability matrix of all nine sites during each 
month from 2008 to 2012 and selected a transition 
probability matrix calculated from the Milford area in Utah 
since it shows an annual output that most closely resembles 
that of the state.  

 

 
Figure 4.  Solar irradiation data collected from the nine sites of US 

Southwest in minute-by-minute resolution. 
 

     As input data to the MCMC simulation and the 
transition probability matrix calculated from the generation 
output of PV systems in the Milford area, we use hourly 
solar data collected from the 19 sites of the state in the 
TMY3 format [9]. Figure  7 shows the generation output of 
a 1.4 MW single PV system that consists of Canadian Solar 
modules (CS5P-220M) and a 1.4 MW Siemens inverter 
(SINVERT PVS1401 UL) on July 4. The red curves in the 
figure indicate the generation output of the PV system in 
each site, discretized, averaged and presented in hourly 
intervals. The black curves illustrate the minute-by-minute 

P(t) P(t+1) 
? 

   t t+1 
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synthesized generation outputs of the PV systems. They 
were obtained by the MCMC simulation method. 

 

 
Figure 5.  Generation output of a 1.4 MW PV system installed in the 

nine sites of US Southwest on August 23 [13]. 

 
Figure 6.  The generation output of total PV systems showing rapid 

variations on August 23. 
 
As an example, let the current PV generation at hour 

h be P(h) PU, which is estimated from hourly solar data. 
To estimate the PV generation output in the next minute, 
this study generates a uniformly distributed random 
number, u, determines the boundaries of the cumulative 
probabilities of the transition probability matrix that u 
belongs to, and estimates the generation output of the 
next state as the generation output corresponding to u, or 
𝑃(ℎ) + 𝑝  PU. That is, 𝑃(ℎ + 1/60) 	= 	𝑃(ℎ) + 𝑝  PU. 
The results in Figure 8 show that the total generation of 
the PV systems geographically dispersed across Georgia 
that produce 10% of the peak demand in minute 
resolution exhibit rapid short-term intermittency, which 
is comparable to that in Figure 6. Figure 7 and Figure 8 
indicate that the rapid variations in the generation output 
of geographically dispersed PV systems are reduced 
because of the geographical spread, which is referred to 
as smoothing effect. Therefore, it seems that 
geographically distributed PV systems operating in one-
minute intervals deal effectively with peaks of the 

statewide power grid. The reduction of the rapid variations 
in the combined PV system output is approximately an 
order of magnitude smaller than the variations of the 
individual plants that comprise the system (Figure 8). 
 

 

 
Figure 7.  Generation output of a 1.4 MW PV system in the 19 sites of the 
state of Georgia. Red curves represent hourly data, while black curves 
represent minute-resolution synthesized solar data [13]. 
 

 

 
Figure 8.  The generation output of combined PV systems geographically 
dispersed across the 19 sites, on September 27, 2010 shows a significantly 
smaller variation of the solar output on a transiently cloudy day. 
 
 
5. Assessment of Dissimilarities in Daily 

Short Term Production Patterns 
 

In the second approach to studying production 
patterns, we focus on quantifying the effects of randomness 
in renewable solar generation. We are interested in 
measuring the variability of production in a spatially 
distributed cluster of plants (units). It is expected that, 
when the production outputs are averaged over the number 
of units, the production pattern becomes less variable 
compared to the output from an individual unit. Also, the 
measure of similarity of production patterns depends, as 
expected, on the distance between the units. In this section 
we quantify these statements and propose a methodology 
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for a formal assessment of measures of similarity of 
production patterns and ultimately a measure of system’s 
production uniformity (and ability to forecast its 
production). 
 
        We start with an example. Consider a unit located 
in a cluster of stations in western Texas (Figure 9). 
Among 41 stations in the cluster for our illustration, we 
select the station located at (32.55N, 102.75W), with 
capacity of 118 MW. For a selected day, June 27, 1966, 
the production of this unit is presented in Figure 10 as 
red curve, the cumulative production of all 41 units from 
this cluster for the same day is presented in black, and 
the summary production of all cluster units, over the year 
period is presented in green. For comparison purposes, 
the outputs are normalized (as probability distributions), 
so the area below each curve is equal to 1. It is apparent 
that the variability of solar PV generation decreases with 
averaging with respect to cluster units and ultimately 
with averaging with respect to time.  
 

 
Figure 9. Locations of the hypothetical cluster of 41 solar farms in 
Western Texas 
 
     To facilitate power stability of the production, it is 
desirable that different units exhibit dissimilar 
compensating concurrent production patterns. We 
expect to find that the dissimilarity increases with the 
distance between the units. To this end, we define 
dissimilarity measures in two ways: (1) as absence of 
strong positive correlation among production patterns, 
and (2) as a distance between the normalized production 

patterns, in the spirit of distances between probability 
measures. 
 
     For global correlation between two patterns, we use the 
Spearman’s correlation coefficient since it does not depend 
on the inherent Gaussian assumptions required by the 
standard Pearson’s correlation coefficient.  

 
Figure 10: In red, daily production by the station #3 during June 27, 1966. 
The normalized cumulative production on the same day by 41 units from 
a cluster located nearby (within about 200 miles) is presented in black. 
The green density shows normalized cumulative yearly production for the 
cluster. As expected, the smoothness increases when averaging by the 
units and time. 

Figure 11:  Spearman correlations between all pairs of units in the western 
cluster plotted against distance (the reference unit distance is 1 degree, 
which is approximately 111 km). Note the negative slope. 
 
     By looking at the regression of the correlation 
coefficient on the distance between the units we find a 
statistically significant negative slope, suggesting that far-
away patterns are more dissimilar and potentially more 
compensating. Figure 11 shows the Spearman correlation 
between all possible pairs in the cluster plotted against the 
distance between pair’s units. Although the scatterplot is 
noisy, the negatively-sloped regression has significant 
slope. The null hypothesis that the slope is null was rejected 
with p-value smaller than 10-3. 
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     We found that Pearson’s and Kendall’s correlations 
behave in the same way, yielding significant negative 
slope in the best linear fit of correlations against the 
corresponding distances.  
 
     Although correlations, as measures of similarity of 
patterns, are time honored and well understood, they 
could be misleading for some pattern configurations. 
The patterns could be functionally dissimilar and 
compensating, yet the correlation would measure as 
high. This is because correlation is assessed at the 
sampling resolution. Potentially more informative 
measure will be the wavelet cospectra, or its normalized 
version, wavelet-based correlation. The construction of 
wavelet cospectra is simple: the two patterns are 
decomposed to the wavelet domain as a hierarchy of 
multiscale parts. The coefficients from the 
corresponding parts are compared and their covariance 
is assessed. This produces a measure of similarity that is 
resolutions/scale sensitive. As such, this measure can 
capture similarities/dissimilarities at time resolutions 
that are dyadic multiples of the data acquisition sampling 
rate. As an example, imagine two highly correlated 
patterns with a noise added to each. Depending on the 
level of the noise, standard correlation measures could 
miss the present coarse-level correlation. However, in 
the multiscale approach, the similarity will be captured 
at the resolution scale in which the similar patterns 
“live.” 
 
     Figure 12 provides an example of normalized wavelet 
cospectra. To illustrate wavelet cospectra, July 24, 1996 
outputs from four stations in the Western Texas cluster 
were selected. One station was acting as a baseline, and 
the other three were at distances 1.14, 2.4, and 3.7 deg. 
units, respectively, from it. We present normalized 
wavelet cospectra in Figure 12. Note that the close units 
1 and 2 are similar at all scales. The units 3 and 4 are 
dissimilar with 1 at small scales 10’- 80’, but become 
similar at the scale of 160’ and higher. Operationally, the 
signals 1 and (3,4) are compensating each other at time 
scales smaller than approximately 2 hours, but are 
synchronized at larger time scales. 
 
     To measure dissimilarity among production patterns, 
an alternative approach has a potential. Since the daily 
production patterns, considered as functions, are non-
negative and have a bounded domain, it is easy to 
normalize them and consider as probability densities. 
The measures of distances among probability measures 
is a well understood and well researched topic among 
probabilists. Since the supports of the two densities to be 
compared are approximately equal, the difference among 
them depends only on their shape. 

 

 
Figure 12: Wavelet-based correlation between units (1,2) in black, (1,3) 
in green, and (1,4) in red. The distances between the pairs are distance 
1.14, 2.4, and 3.7 deg, respectively. Note that close units (1,2) are well 
correlated at most of the scales, while more distant pairs (1,2) and (1,4) 
are negatively correlated at scales up to 80’.  
 
     When the difference between densities is large, it is 
expected the station outputs will be compensating each 
other. We consider three standard measures of difference 
between densities: Hellinger, Kullback-Leibler, and 
Divergence distances.  For two densities f and g, the 
distances are defined respectively as 

𝑑M =
1
2

𝑓(𝑥) − 𝑔(𝑥)
P
𝑑𝑥	, 

𝑑QR = 	 𝑓(𝑥) ⋅ 𝑙𝑜𝑔
𝑔(𝑥)
𝑓(𝑥)

𝑑𝑥	, 

𝑑V = 2	
(𝑓(𝑥) − 𝑔(𝑥))P

𝑓(𝑥) + 𝑔(𝑥)
𝑑𝑥	. 

 
Except the Kulback-Leibler distance, which is not 
symmetric in its arguments, the other two distances are 
well calibrated and satisfy properties of symmetry and the 
triangle inequality. Intuitively, small distances would be 
linked to the equi-behavior of production patterns. In the 
presence of variability of patterns, this would indicate 
synchronization. On the other hand, large distances in 
normalized production densities will be linked with 
different shapes that are complementary in their 
convolution. 
 
As expected, we found that each of the three distances 
between normalized production patterns increase with the 
distance between the units. To illustrate the performance of 
this collection of measures, we selected the Hellinger 
distance. Figure 13 shows the Hellinger distance between 
station #3 and other stations from the cluster as a scatterplot 
against the respective spatial distance. Note, as expected, 
that the dissimilarity between patterns increases as the 
distance between the units increases, and this increase, 
statistically assessed, was significant. We found that the 
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Kulback-Leibler and Divergence distances behave 
similarly, although the practical assessment of the 
Kiulback–Leibler distance could cause numerical 
instabilities (because of the logarithm of the ratio of the 
functions is obtained empirically). 
 
     In conclusion, both, the multiscale covariance 
measures and distances between probability measures 
showed potential in assessing similarity of production 
patterns. Such measures encourage further exploration 
and will play a pivotal role in the design of robust 
systems of geographically diversified plants. There, the 
smoothing compensation of production patterns among 
the units is maximized, thus reducing the cost of 
additional measures, which would be needed to 
accommodate the rapid variations of the solar plant 
outputs, especially at higher penetration levels. 

 
Figure 13: The Hellinger distances (red dots) plotted agains spatial 
distances for pairs formed by a baseline station and all other units in 
the cluster. The best linear fit produces statistically significant 
increasing slope (p-value = 0.0066). 

6. Conclusion 
 
PV systems observed over hourly intervals appear to 

have rather uniform outputs. By Markov chain Monte 
Carlo simulations, we illustrate the effects of short-term 
intermittency of transient cloudiness and weather 
disturbances in the atmosphere. We model the generation 
of geographically dispersed PV systems in minute 
intervals. The results indicate that geographically 
distributed PV systems operating in one-minute intervals 
could cope with peaks of a statewide power grid because 
of the smoothing effect caused by their geographical 
spread. In other words, the rapid variations in the 
generation output of geographically dispersed PV 
systems are canceled out. However, since PV systems 
observed in short time intervals can suddenly decrease 
their output, they create an additional need for a spinning 
reserve, energy storage, or demand side management 

that can compensate partly for the uncertainty involved in 
their output. In fact, because of their intermittency, or 
sudden energy shortages and overages, PV systems can 
actually increase the fossil fuel consumption of faster 
dispatchable spinning reserves, which typically burn the 
most expensive fuel. Thus, the smooth integration of 
renewables into microgrids, statewide, and nationwide 
power grids necessitates their further investigation as a 
source of supplementary energy, especially for peak power 
and spinning reserves, and changes in the costs of 
generation resulting from their intermittency [7]. One 
possible generalization to be considered in future research 
is to distinguish Markov chain transition matrices for 
convective weather disturbances (characteristic for 
summer and requiring a short memory transition 
probabilities) and frontal disturbances (more frequent in 
Fall, Winter, and Spring) in which the Markov chain 
transition probabilities require longer history. 

In order to approach the study of weather induced 
intermittencies, we propose a few additional analytic tools. 
The introduced measures of dissimilarity between 
production patterns show promising applicability as one of 
the criteria for optimal allocation of solar station 
clusters/systems by placing PV plants at positions that 
maximize diversity of the production patterns.  

We also plan to propose a wavelet-based optimization 
procedure where nominal powers of 𝑁  stations on fixed 
locations are optimized for nominal distribution of powers, 
under the constraint that a single station can receive 
nominal power between 0 and m MW (maybe discretized). 

We generalize the VR coefficient in [20] to total 
wavelet-based variance reduction (TWVR), and use the 
maximum TWVR as a goal in optimization procedure. This 
coefficient is defined as 

𝑇𝑉𝑊𝑅 = 	
𝑉𝑎𝑟 𝑑-∗_

-84

𝑉𝑎𝑟 𝑑-∗_
-84`abc

 

where the 𝑑-∗s are wavelet coefficients at the finest level of 
detail representing the intensity of the short term 
fluctuations in daily output  of the 𝑖th station summed over 
a year. In the data set, we analyze the Nyquist time scale of 
10d as the finest wavelet resolution. Intuitively, the above 
ratio quantifies the capability of a system to cancel the 
effects of short term fluctuations. One benefit over the 
Fourier methodology is a time/scale nature of wavelet 
decompositions, which enables the TWVR coefficient to 
be defined for arbitrary time intervals during the day, say 
only for the afternoon output, or only for outputs between 
9:00 am and 1:00 pm.  

The wavelet based covariances can identify the time 
scales at which the signals show similarity. In future work, 
we plan to analyze level-wise covariance matrices of all 
patterns within a cluster and propose a design that 
minimizes level-wise “correlation numbers.” Such 
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problems are common in antenna spatial distribution 
design where allocations are made to minimize the 
overall correlation between the units measured via a 
trace of square of covariance matrix. With this objective 
function, we can employ an optimization algorithm to 
find optimal spatial distribution within the constraints 
imposed by allowable locations. 

The purpose of the exercise presented in this paper is 
to create an analytical framework for integration and 
optimization of the various generation sources in order 
to meet the uncertainties of the fast changing aggregate 
PV output of multiple systems under certain weather 
conditions, and mitigate its variations through combined 
use of storage technologies, generation spinning reserve, 
as well as voluntary and/or involuntary demand response. 
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