65 research outputs found

    Creation of NV centers in diamond under 155 MeV electron irradiation

    Full text link
    Single-crystal diamond substrates presenting a high concentration of negatively charged nitrogen-vacancy centers (NV-) are on high demand for the development of optically pumped solid-state sensors such as magnetometers, thermometers or electrometers. While nitrogen impurities can be easily incorporated during crystal growth, the creation of vacancies requires further treatment. Electron irradiation and annealing is often chosen in this context, offering advantages with respect to irradiation by heavier particles that negatively affect the crystal lattice structure and consequently the NV- optical and spin properties. A thorough investigation of electron irradiation possibilities is needed to optimize the process and improve the sensitivity of NV-based sensors. In this work we examine the effect of electron irradiation in a previously unexplored regime: extremely high energy electrons, at 155 MeV. We develop a simulation model to estimate the concentration of created vacancies and experimentally demonstrate an increase of NV- concentration by more than 3 orders of magnitude following irradiation of a nitrogen-rich HPHT diamond over a very large sample volume, which translates into an important gain in sensitivity. Moreover, we discuss the impact of electron irradiation in this peculiar regime on other figures of merits relevant for NV sensing, i.e. charge state conversion efficiency and spin relaxation time. Finally, the effect of extremely high energy irradiation is compared with the more conventional low energy irradiation process, employing 200 keV electrons from a transmission electron microscope, for different substrates and irradiation fluences, evidencing sixty-fold higher yield of vacancy creation per electron at 155 MeV

    Direct and integrating sampling in terahertz receivers from wafer-scalable InAs nanowires

    Get PDF
    Terahertz (THz) radiation will play a pivotal role in wireless communications, sensing, spectroscopy and imaging technologies in the decades to come. THz emitters and receivers should thus be simplified in their design and miniaturized to become a commodity. In this work we demonstrate scalable photoconductive THz receivers based on horizontally-grown InAs nanowires (NWs) embedded in a bow-tie antenna that work at room temperature. The NWs provide a short photoconductivity lifetime while conserving high electron mobility. The large surface-to-volume ratio also ensures low dark current and thus low thermal noise, compared to narrow-bandgap bulk devices. By engineering the NW morphology, the NWs exhibit greatly different photoconductivity lifetimes, enabling the receivers to detect THz photons via both direct and integrating sampling modes. The broadband NW receivers are compatible with gating lasers across the entire range of telecom wavelengths (1.2–1.6 ÎŒm) and thus are ideal for inexpensive all-optical fibre-based THz time-domain spectroscopy and imaging systems. The devices are deterministically positioned by lithography and thus scalable to the wafer scale, opening the path for a new generation of commercial THz receivers

    COVID-19 symptoms at hospital admission vary with age and sex: results from the ISARIC prospective multinational observational study

    Get PDF
    Background: The ISARIC prospective multinational observational study is the largest cohort of hospitalized patients with COVID-19. We present relationships of age, sex, and nationality to presenting symptoms. Methods: International, prospective observational study of 60 109 hospitalized symptomatic patients with laboratory-confirmed COVID-19 recruited from 43 countries between 30 January and 3 August 2020. Logistic regression was performed to evaluate relationships of age and sex to published COVID-19 case definitions and the most commonly reported symptoms. Results: ‘Typical’ symptoms of fever (69%), cough (68%) and shortness of breath (66%) were the most commonly reported. 92% of patients experienced at least one of these. Prevalence of typical symptoms was greatest in 30- to 60-year-olds (respectively 80, 79, 69%; at least one 95%). They were reported less frequently in children (≀ 18 years: 69, 48, 23; 85%), older adults (≄ 70 years: 61, 62, 65; 90%), and women (66, 66, 64; 90%; vs. men 71, 70, 67; 93%, each P < 0.001). The most common atypical presentations under 60 years of age were nausea and vomiting and abdominal pain, and over 60 years was confusion. Regression models showed significant differences in symptoms with sex, age and country. Interpretation: This international collaboration has allowed us to report reliable symptom data from the largest cohort of patients admitted to hospital with COVID-19. Adults over 60 and children admitted to hospital with COVID-19 are less likely to present with typical symptoms. Nausea and vomiting are common atypical presentations under 30 years. Confusion is a frequent atypical presentation of COVID-19 in adults over 60 years. Women are less likely to experience typical symptoms than men

    Strains induced during FDSOI transistors manufacturing : a study by dark-field electron holography

    No full text
    Longtemps considĂ©rĂ©es comme nĂ©fastes, les contraintes sont devenues un des moyens principaux pour amĂ©liorer les performances des dispositifs mĂ©tal-oxyde-semiconducteur (MOS). En effet, les dĂ©formations gĂ©nĂ©rĂ©es augmentent sensiblement la mobilitĂ© des porteurs dans le silicium. C'est dans ce cadre que j'ai Ă©tudiĂ©, par holographie Ă©lectronique en champ sombre (DFEH), les dĂ©formations cristallines engendrĂ©es par certaines Ă©tapes clĂ©s du procĂ©dĂ© de fabrication de transistors planaires de derniĂšre gĂ©nĂ©ration, totalement dĂ©plĂ©tĂ©s car rĂ©alisĂ©s sur des substrats silicium sur isolant (FD-SOI). La DFEH est une technique de microscopie Ă©lectronique en transmission (TEM), rĂ©cemment inventĂ©e au CEMES, qui permet de cartographier les dĂ©formations cristallines avec une rĂ©solution spatiale nanomĂ©trique et une prĂ©cision de 10-4 sur des champs de vue micromĂ©triques. J'ai mis au point et utilisĂ© des modĂ©lisations par Ă©lĂ©ments finis afin de comprendre puis reproduire mes rĂ©sultats expĂ©rimentaux et ainsi identifier les phĂ©nomĂšnes mĂ©caniques mis en jeu au cours de diffĂ©rentes Ă©tapes. AprĂšs avoir prouvĂ© que la DFEH est adaptĂ©e Ă  la mesure des champs de dĂ©formation dans les structures MOS FDSOI (couche superficielle de Si dĂ©sorientĂ©e vis-Ă -vis du substrat de rĂ©fĂ©rence), je me suis intĂ©ressĂ© au procĂ©dĂ© de conversion de films minces de Si en SiGe, par la mĂ©thode dite de "condensation de germanium". J'ai montrĂ© que cette technique permet d'obtenir des films minces de type SiGe (SGOI) pseudomorphes, de composition variable. Les dĂ©formations hors plan mesurĂ©es par DFEH mettent en Ă©vidence les deux mĂ©canismes affectant la redistribution du Ge (diffusion et injection), dont l'importance relative dĂ©pend de la tempĂ©rature Ă  laquelle s'effectue le procĂ©dĂ©. De plus, j'ai montrĂ© que ces films minces SGOI, initialement contraints, se relaxaient trĂšs fortement lors de leur gravure en vue de la fabrication de substrats co-intĂ©grĂ©s SOI/SGOI. J'ai pu identifier que cet effet, initialement observĂ© Ă  partir de mesures Ă©lectriques et connu sous le nom d'effet "SA/SB", ne pouvait ĂȘtre dĂ» qu'Ă  des caractĂ©ristiques mĂ©caniques dĂ©gradĂ©es de l'interface SiGe/SiO2. Je me suis ensuite intĂ©ressĂ© Ă  certaines des Ă©tapes clĂ©s de la fabrication du transistor suspectĂ©es de modifier l'Ă©tat de dĂ©formation de la structure, telles que la fabrication de l'empilement de grille et des sources/drains ainsi que de la siliciuration nĂ©cessaire Ă  la prise des contacts. J'ai pu expliquer en quoi et pourquoi ces Ă©tapes impactaient l'Ă©tat final de dĂ©formation du canal du transistor et donc ses performances. Par ailleurs, je montre comment et dans quelles limites la DFEH peut ĂȘtre utilisĂ©e pour mesurer des concentrations de dopants, en conservant une rĂ©solution nanomĂ©trique. J'ai particuliĂšrement Ă©tudiĂ© le cas (favorable) du bore dans le silicium et, aprĂšs couplage Ă  des mesures Ă©lectriques, j'ai ainsi pu calculer le coefficient reliant les dĂ©formations mesurĂ©es aux concentrations de bore en substitution. Finalement, j'ai comparĂ© et discutĂ© des diffĂ©rences entre informations fournies par DFEH et par diffraction de rayons X haute rĂ©solution. Une annexe complĂšte ce travail et discute des conditions optiques et d'utilisation optimales des sources Ă  Ă©mission de champ Schottky Ă©quipant un TEM, notamment de la contribution des lobes d'Ă©mission latĂ©rale sur le degrĂ© de cohĂ©rence de la sonde.After being considered harmful for a long time, stress became one of the principal means to improve metal-oxide-semiconductor (MOS) device performance. Indeed, the generated strains significantly increase carrier mobility in silicon. Within this context, I used dark-field electron holography (DFEH) to study the crystalline strains generated by some key steps of the manufacturing process of latest generation of planar transistors, fully depleted as produced on silicon on insulator substrates (FD-SOI). DFEH is a transmission electron microscopy (TEM) technique, recently invented at CEMES, which allows crystalline strain to be mapped with nanometric resolution and an accuracy of 10-4 over micrometric fields of view. I developed and used finite element models in order to understand, then reproduce, my experimental results and thus identify the mechanical phenomena involved during different processing steps. After proving that DFEH is suitable for strain fields mapping in FDSOI MOS structures (Si surface layer disorientated in respect of the reference substrate), I have been interested in the conversion process of thin Si films into SiGe, by a method known as "germanium condensation". I showed that this technique enables pseudomorphous thin SiGe films (SGOI) of variable composition to be obtained. The out-of-plane strain measured by DFEH emphasises the two mechanisms affecting the Ge redistribution (diffusion and injection), whose relative importance depends on the temperature of the process. Moreover, I showed that these thin SGOI films, initially stressed, relax strongly during the etching carried out to manufacture co-integrated SOI/SGOI substrates. I could identify that this effect, initially observed by electrical measurements and known as "SA/SB" effect, can only be explained by a degradation of the mechanical characteristics of the SiGe/SiO2 interface. I have also been interested in some of the key steps of the transistor manufacturing suspected to modify the structural strain state, such as the grid stack and sources/drains processes, as well as salicidation necessary to form the contacts. I was able to explain how and why these steps impact the final strain state of the transistor channel and thus its performance. In a separate development, I have shown how DFEH can be used to measure doping concentrations while preserving a nanometric resolution, and discuss its limits. I studied in particular the (favourable) case of boron doping in silicon and, after electrical measurements coupling, I calculated the coefficient connecting the measured strains to the boron substitution concentrations. Finally, I compared and discussed the differences between information obtained by DFEH and high resolution X-ray diffraction. An appendix completes this work and discusses the optical and optimal use conditions of Schottky field emission sources equipping a TEM, in particular the contribution of side-emission lobes on the degree of coherence of the probe

    DĂ©formations introduites lors de la fabrication de transistors FDSOI : une contribution de l'holographie Ă©lectronique en champ sombre

    Get PDF
    After being considered harmful for a long time, stress became one of the principal means to improve metal-oxide-semiconductor (MOS) device performance. Indeed, the generated strains significantly increase carrier mobility in silicon. Within this context, I used dark-field electron holography (DFEH) to study the crystalline strains generated by some key steps of the manufacturing process of latest generation of planar transistors, fully depleted as produced on silicon on insulator substrates (FD-SOI). DFEH is a transmission electron microscopy (TEM) technique, recently invented at CEMES, which allows crystalline strain to be mapped with nanometric resolution and an accuracy of 10-4 over micrometric fields of view. I developed and used finite element models in order to understand, then reproduce, my experimental results and thus identify the mechanical phenomena involved during different processing steps. After proving that DFEH is suitable for strain fields mapping in FDSOI MOS structures (Si surface layer disorientated in respect of the reference substrate), I have been interested in the conversion process of thin Si films into SiGe, by a method known as "germanium condensation". I showed that this technique enables pseudomorphous thin SiGe films (SGOI) of variable composition to be obtained. The out-of-plane strain measured by DFEH emphasises the two mechanisms affecting the Ge redistribution (diffusion and injection), whose relative importance depends on the temperature of the process. Moreover, I showed that these thin SGOI films, initially stressed, relax strongly during the etching carried out to manufacture co-integrated SOI/SGOI substrates. I could identify that this effect, initially observed by electrical measurements and known as "SA/SB" effect, can only be explained by a degradation of the mechanical characteristics of the SiGe/SiO2 interface. I have also been interested in some of the key steps of the transistor manufacturing suspected to modify the structural strain state, such as the grid stack and sources/drains processes, as well as salicidation necessary to form the contacts. I was able to explain how and why these steps impact the final strain state of the transistor channel and thus its performance. In a separate development, I have shown how DFEH can be used to measure doping concentrations while preserving a nanometric resolution, and discuss its limits. I studied in particular the (favourable) case of boron doping in silicon and, after electrical measurements coupling, I calculated the coefficient connecting the measured strains to the boron substitution concentrations. Finally, I compared and discussed the differences between information obtained by DFEH and high resolution X-ray diffraction. An appendix completes this work and discusses the optical and optimal use conditions of Schottky field emission sources equipping a TEM, in particular the contribution of side-emission lobes on the degree of coherence of the probe.Longtemps considĂ©rĂ©es comme nĂ©fastes, les contraintes sont devenues un des moyens principaux pour amĂ©liorer les performances des dispositifs mĂ©tal-oxyde-semiconducteur (MOS). En effet, les dĂ©formations gĂ©nĂ©rĂ©es augmentent sensiblement la mobilitĂ© des porteurs dans le silicium. C'est dans ce cadre que j'ai Ă©tudiĂ©, par holographie Ă©lectronique en champ sombre (DFEH), les dĂ©formations cristallines engendrĂ©es par certaines Ă©tapes clĂ©s du procĂ©dĂ© de fabrication de transistors planaires de derniĂšre gĂ©nĂ©ration, totalement dĂ©plĂ©tĂ©s car rĂ©alisĂ©s sur des substrats silicium sur isolant (FD-SOI). La DFEH est une technique de microscopie Ă©lectronique en transmission (TEM), rĂ©cemment inventĂ©e au CEMES, qui permet de cartographier les dĂ©formations cristallines avec une rĂ©solution spatiale nanomĂ©trique et une prĂ©cision de 10-4 sur des champs de vue micromĂ©triques. J'ai mis au point et utilisĂ© des modĂ©lisations par Ă©lĂ©ments finis afin de comprendre puis reproduire mes rĂ©sultats expĂ©rimentaux et ainsi identifier les phĂ©nomĂšnes mĂ©caniques mis en jeu au cours de diffĂ©rentes Ă©tapes. AprĂšs avoir prouvĂ© que la DFEH est adaptĂ©e Ă  la mesure des champs de dĂ©formation dans les structures MOS FDSOI (couche superficielle de Si dĂ©sorientĂ©e vis-Ă -vis du substrat de rĂ©fĂ©rence), je me suis intĂ©ressĂ© au procĂ©dĂ© de conversion de films minces de Si en SiGe, par la mĂ©thode dite de "condensation de germanium". J'ai montrĂ© que cette technique permet d'obtenir des films minces de type SiGe (SGOI) pseudomorphes, de composition variable. Les dĂ©formations hors plan mesurĂ©es par DFEH mettent en Ă©vidence les deux mĂ©canismes affectant la redistribution du Ge (diffusion et injection), dont l'importance relative dĂ©pend de la tempĂ©rature Ă  laquelle s'effectue le procĂ©dĂ©. De plus, j'ai montrĂ© que ces films minces SGOI, initialement contraints, se relaxaient trĂšs fortement lors de leur gravure en vue de la fabrication de substrats co-intĂ©grĂ©s SOI/SGOI. J'ai pu identifier que cet effet, initialement observĂ© Ă  partir de mesures Ă©lectriques et connu sous le nom d'effet "SA/SB", ne pouvait ĂȘtre dĂ» qu'Ă  des caractĂ©ristiques mĂ©caniques dĂ©gradĂ©es de l'interface SiGe/SiO2. Je me suis ensuite intĂ©ressĂ© Ă  certaines des Ă©tapes clĂ©s de la fabrication du transistor suspectĂ©es de modifier l'Ă©tat de dĂ©formation de la structure, telles que la fabrication de l'empilement de grille et des sources/drains ainsi que de la siliciuration nĂ©cessaire Ă  la prise des contacts. J'ai pu expliquer en quoi et pourquoi ces Ă©tapes impactaient l'Ă©tat final de dĂ©formation du canal du transistor et donc ses performances. Par ailleurs, je montre comment et dans quelles limites la DFEH peut ĂȘtre utilisĂ©e pour mesurer des concentrations de dopants, en conservant une rĂ©solution nanomĂ©trique. J'ai particuliĂšrement Ă©tudiĂ© le cas (favorable) du bore dans le silicium et, aprĂšs couplage Ă  des mesures Ă©lectriques, j'ai ainsi pu calculer le coefficient reliant les dĂ©formations mesurĂ©es aux concentrations de bore en substitution. Finalement, j'ai comparĂ© et discutĂ© des diffĂ©rences entre informations fournies par DFEH et par diffraction de rayons X haute rĂ©solution. Une annexe complĂšte ce travail et discute des conditions optiques et d'utilisation optimales des sources Ă  Ă©mission de champ Schottky Ă©quipant un TEM, notamment de la contribution des lobes d'Ă©mission latĂ©rale sur le degrĂ© de cohĂ©rence de la sonde

    Strain mapping of advanced electronic devices by TEM based methods.

    No full text
    International audienc
    • 

    corecore