213 research outputs found

    DNA-free RNA isolation protocols for Arabidopsis thaliana, including seeds and siliques

    Get PDF
    Background High throughput applications of the reverse transcriptase quantitative PCR (RT-qPCR) for quantification of gene expression demand straightforward procedures to isolate and analyze a considerable number of DNA-free RNA samples. Published protocols are labour intensive, use toxic organic chemicals and need a DNase digestion once pure RNAs have been isolated. In addition, for some tissues, the amount of starting material may be limiting. The convenience of commercial kits is often prohibitive when handling large number of samples. Findings We have established protocols to isolate DNA-free RNA from Arabidopsis thaliana tissues ready for RT-qPCR applications. Simple non-toxic buffers were used for RNA isolation from Arabidopsis tissues with the exception of seeds and siliques, which required the use of organic extractions. The protocols were designed to minimize the number of steps, labour time and the amount of starting tissue to as little as 10–20 mg without affecting RNA quality. In both protocols genomic DNA (gDNA) can be efficiently removed from RNA samples before the final alcohol precipitation step, saving extra purification steps before cDNA synthesis. The expression kinetics of previously characterized genes confirmed the robustness of the procedures. Conclusion Here, we present two protocols to isolate DNA-free RNA from Arabidopsis tissues ready for RT-qPCR applications that significantly improve existing ones by reducing labour time and the use of organic extractions. Accessibility to these protocols is ensured by its simplicity and the low cost of the materials used

    La violencia en la pareja desde tres perspectivas: Víctimas, agresores y profesionales

    Get PDF
    La investigación de problemas sociales complejos como la violencia contra las mujeres dentro de la pareja obliga a buscar mecanismos de observación, análisis e interpretación que sean capaces de explicar acontecimientos ya sucedidos y de anticipar escenarios futuros. El objetivo de este artículo es analizar desde una perspectiva relacional, ecológica y sistémica de la violencia dentro de la pareja los discursos proporcionados por los hombres, las mujeres y los profesionales que intervienen. Para ello se ha planteado un estudio de carácter cualitativo en el que han participado 41 personas (9 víctimas, 18 agresores y 14 profesionales). Los resultados muestran a) la diversidad en las características de hombres y mujeres involucrados en situaciones violentas y en el tipo de relación que establecen, b) la percepción de los participantes del tratamiento diferenciado que las instituciones parecen otorgar a hombres y mujeres, c) la necesidad de revisar algunos de los procedimientos jurídicos y de intervención y d) la importancia de los estados emocionales y su influencia en los comportamientos de victimas, agresores y profesionales. Finalmente se plantean algunas propuestas dirigidas a mejorar los diseños de investigación y las estrategias de intervención

    El gen DOFG4 de Arabidopsis participa en la regulación de la germinación de la semilla mediada por ABA

    Get PDF
    La semilla es un órgano clave en el ciclo de vida de las plantas y su capacidad para permanecer en estado de quiescencia y germinar sólo cuando las condiciones ambientales son favorables ha representado una ventaja evolutiva y permitido el desarrollo de la agricultura. La germinación comienza con una absorción de agua que permite la expansión celular y reiniciar el metabolismo. En sentido estricto, la germinación termina cuando la elongación del eje embrionario permite a la radícula penetrar la cubierta de la semilla. Durante la fase postgerminativa, las sustancias de reserva almacenadas en la semilla son utilizadas para el crecimiento de la plántula hasta que ésta es capaz de fotosintetizar. Los ácidos giberélico (GA) y abscísico (ABA) son las dos hormonas más importantes en el control de la germinación. Diferentes factores ambientales y genéticos son capaces de afectar al balance ABA/GA y el descenso de los niveles de ABA e incremento de los de GA durante la germinación reflejan su papel negativo y positivo, respectivamente, en este proceso. En cereales, los genes de hidrolasas que movilizan las sustancias de reserva responden al GA mediante un motivo en cis tripartito conservado llamado GARC que es reconocido por factores de transcripción (TFs) de las familias MYB (R2R3 y R1) y DOF. Sin embargo, el GARC no parece estar presente en los promotores inducibles por GA en dicotiledóneas (Ogawa et al., 2003) y las diferencias en la respuesta a ABA entre la capa de aleurona de cereales y el endospermo de las dicotiledóneas (Penfield et al., 2006), apunta a la existencia de mecanismos de regulación diferentes. Estamos abordando el estudio de estos mecanismos mediante dos aproximaciones diferentes para identificar y caracterizar elementos en cis y factores de transcripción implicados en la germinación de la dicotiledónea Arabidopsis thaliana

    FUSCA3 from barley unveils a common transcriptional regulation of seed-specific genes between cereals and Arabidopsis.

    Get PDF
    Accumulation of storage compounds in the embryo and endosperm of developing seeds is a highly regulated process that allows seedling growth upon germination until photosynthetic capacity is acquired. A critical regulatory element in the promoters of seed storage protein (SSP) genes from dicotyledonous species is the RY box, a target of B3-type transcription factors. However, the functionality of this motif in the transcriptional regulation of SSP genes from cereals has not been fully established. We report here the identification and molecular characterization of barley FUSCA3, a B3-type transcription factor as yet uncharacterized in monocotyledonous plants. Our results show that both the barley and Arabidopsis FUS3 genes maintain a conserved functionality for the regulation of SSP genes and anthocyanin biosynthesis in these two distantly related phylogenetic groups. Complementation of the loss-of-function mutant fus3 in Arabidopsis by the barley HvFus3 gene resulted in restored transcription from the At2S3 gene promoter and normal accumulation of anthocyanins in the seed. In barley, HvFUS3 participates in transcriptional activation of the endosperm-specific genes Hor2 and Itr1. HvFUS3, which specifically binds to RY boxes in EMSA experiments, trans-activates Hor2 and Itr1 promoters containing intact RY boxes in transient expression assays in developing endosperms. Mutations in the RY boxes abolished the HvFUS3-mediated trans-activation. HvFus3 transcripts accumulate in the endosperm and in the embryo of developing seeds, peaking at mid maturation phase. Remarkably, HvFUS3 interacts with the Opaque2-like bZIP factor BLZ2 in yeast, and this interaction is essential for full trans-activation of the seed-specific genes in plant

    Identification of Novel Components of the Unfolded Protein Response in Arabidopsis

    Get PDF
    Unfavorable environmental and developmental conditions may cause disturbances in protein folding in the endoplasmic reticulum (ER) that are recognized and counteracted by components of the Unfolded Protein Response (UPR) signaling pathways. The early cellular responses include transcriptional changes to increase the folding and processing capacity of the ER. In this study, we systematically screened a collection of inducible transgenic Arabidopsis plants expressing a library of transcription factors for resistance toward UPR-inducing chemicals. We identified 23 candidate genes that may function as novel regulators of the UPR and of which only three genes (bZIP10, TBF1, and NF-YB3) were previously associated with the UPR. The putative role of identified candidate genes in the UPR signaling is supported by favorable expression patterns in both developmental and stress transcriptional analyses. We demonstrated that WRKY75 is a genuine regulator of the ER-stress cellular responses as its expression was found to be directly responding to ER stress-inducing chemicals. In addition, transgenic Arabidopsis plants expressing WRKY75 showed resistance toward salt stress, connecting abiotic and ER-stress responses

    A Developmental Switch of Gene Expression in the Barley Seed Mediated by HvVP1 (Viviparous-1) and HvGAMYB Interactions

    Get PDF
    The accumulation of storage compounds in the starchy endosperm of developing cereal seeds is highly regulated at the transcriptional level. These compounds, mainly starch and proteins, are hydrolyzed upon germination to allow seedling growth. The transcription factor HvGAMYB is a master activator both in the maturation phase of seed development and upon germination, acting in combination with other transcription factors. However, the precise mechanism controlling the switch from maturation to germination programs remains unclear. We report here the identification and molecular characterization of Hordeum vulgare VIVIPAROUS1 (HvVP1), orthologous to ABA-INSENSITIVE3 from Arabidopsis thaliana. HvVP1 transcripts accumulate in the endosperm and the embryo of developing seeds at early stages and in the embryo and aleurone of germinating seeds up to 24 h of imbibition. In transient expression assays, HvVP1 controls the activation of Hor2 and Amy6.4 promoters exerted by HvGAMYB. HvVP1 interacts with HvGAMYB in Saccharomyces cerevisiae and in the plant nuclei, hindering its interaction with other transcription factors involved in seed gene expression programs, like BPBF. Similarly, this interaction leads to a decrease in the DNA binding of HvGAMYB and the Barley Prolamine-Box binding Factor (BPBF) to their target sequences. Our results indicate that the HvVP1 expression pattern controls the full Hor2 expression activated by GAMYB and BPBF in the developing endosperm and the Amy6.4 activation in postgerminative reserve mobilization mediated by GAMYB. All these data demonstrate the participation of HvVP1 in antagonistic gene expression programs and support its central role as a gene expression switch during seed maturation and germination

    Quantum Fluctuations for Gravitational Impulsive Waves

    Full text link
    Quantum fluctuations for a massless scalar field in the background metric of spherical impulsive gravitational waves through Minkowski and de Sitter spaces are investigated. It is shown that there exist finite fluctuations for de Sitter space.Comment: Submitted to Int. J. Mod. Phys.

    The targeted overexpression of SlCDF4 in the fruit enhances tomato size and yield involving gibberellin signalling

    Get PDF
    [EN] Tomato is one of the most widely cultivated vegetable crops and a model for studying fruit biology. Although several genes involved in the traits of fruit quality, development and size have been identified, little is known about the regulatory genes controlling its growth. In this study, we characterized the role of the tomato SlCDF4 gene in fruit development, a cycling DOF-type transcription factor highly expressed in fruits. The targeted overexpression of SlCDF4 gene in the fruit induced an increased yield based on a higher amount of both water and dry matter accumulated in the fruits. Accordingly, transcript levels of genes involved in water transport and cell division and expansion during the fruit enlargement phase also increased. Furthermore, the larger amount of biomass partitioned to the fruit relied on the greater sink strength of the fruits induced by the increased activity of sucrose-metabolising enzymes. Additionally, our results suggest a positive role of SlCDF4 in the gibberellin-signalling pathway through the modulation of GA(4) biosynthesis. Finally, the overexpression of SlCDF4 also promoted changes in the profile of carbon and nitrogen compounds related to fruit quality. Overall, our results unveil SlCDF4 as a new key factor controlling tomato size and composition.Renau-Morata, B.; Carrillo, L.; Cebolla Cornejo, J.; Molina Romero, RV.; Martí-Renau, R.; Domínguez-Figueroa, J.; Vicente-Carbajosa, J.... (2020). The targeted overexpression of SlCDF4 in the fruit enhances tomato size and yield involving gibberellin signalling. Scientific Reports. 10(1):1-14. https://doi.org/10.1038/s41598-020-67537-x1141011FAO. Crops production database. FAOSTAT. Latest update: 04/03/2020. Food and Agriculture Organization of the United Nations. Rome https://www.fao.org/faostat (2018).Willcox, J. K., Catignani, G. L. & Lazarus, S. Tomatoes and cardiovascular health. Crit. Rev. Food Sci. Nutr. 43, 1–18. https://doi.org/10.1080/10408690390826437 (2003).Bai, Y. L. & Lindhout, P. Domestication and breeding of tomatoes: what have we gained and what can we gain in the future?. Ann. Bot. 100, 1085–1094. https://doi.org/10.1093/aob/mcm150 (2007).Gascuel, Q., Diretto, G., Monforte, A. J., Fortes, A. M. & Granell, A. Use of natural diversity and biotechnology to increase the quality and nutritional content of tomato and grape. Front. Plant Sci. https://doi.org/10.3389/fpls.2017.00652 (2017).Handa, A. K., Anwar, R. & Mattoo, A. K. in Fruit Ripening Physiology, Signaling and Genomics (eds Nath, P. et al.) 259–290 (CABI, 2014).van der Knaap, E. et al. What lies beyond the eye: the molecular mechanisms regulating tomato fruit weight and shape. Front. Plant Sci. https://doi.org/10.3389/fpls.2014.00227 (2014).Okello, R. C. O., Heuvelink, E., de Visser, P. H. B., Struik, P. C. & Marcelis, L. F. M. What drives fruit growth?. Funct. Plant Biol. 42(9), 817–827. https://doi.org/10.1071/fp15060 (2015).Bertin, N. Analysis of the tomato fruit growth response to temperature and plant fruit load in relation to cell division, cell expansion and DNA endoreduplication. Ann. Bot. 95, 439–447. https://doi.org/10.1093/aob/mci042 (2005).Smith, M. R., Rao, I. M. & Merchant, A. Source-sink relationships in crop plants and their influence on yield development and nutritional quality. Front. Plant Sci. https://doi.org/10.3389/fpls.2018.01889 (2018).Osorio, S., Ruan, Y. L. & Fernie, A. R. An update on source-to-sink carbon partitioning in tomato. Front. Plant Sci. https://doi.org/10.3389/fpls.2014.00516 (2014).Ho, L. C. The mechanism of assimilate partitioning and carbohydrate compartmentation in fruit in relation Ito the quality and yield of tomato. J. Exp. Bot. 47, 1239–1243. https://doi.org/10.1093/jxb/47.Special_Issue.1239 (1996).Koch, K. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr. Opin. Plant Biol. 7, 235–246. https://doi.org/10.1016/j.pbi.2004.03.014 (2004).Carrari, F. et al. Integrated analysis of metabolite and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behavior. Plant Physiol. 142, 1380–1396. https://doi.org/10.1104/pp.106.088534 (2006).Mounet, F. et al. Gene and metabolite regulatory network analysis of early developing fruit tissues highlights new candidate genes for the control of tomato fruit composition and development. Plant Physiol. 149, 1505–1528. https://doi.org/10.1104/pp.108.133967 (2009).Ozga, J. A. & Reinecke, D. M. Hormonal interactions in fruit development. J. Plant Growth Regul. 22, 73–81. https://doi.org/10.1007/s00344-003-0024-9 (2003).Liu, S. Y. et al. Tomato AUXIN RESPONSE FACTOR 5 regulates fruit set and development via the mediation of auxin and gibberellin signaling. Sci. Rep. https://doi.org/10.1038/s41598-018-21315-y (2018).Serrani, J. C., Sanjuan, R., Ruiz-Rivero, O., Fos, M. & Garcia-Martinez, J. L. Gibberellin regulation of fruit set and growth in tomato. Plant Physiol. 145, 246–257. https://doi.org/10.1104/pp.107.098335 (2007).McAtee, P., Karim, S., Schaffer, R. & David, K. A dynamic interplay between phytohormones is required for fruit development, maturation, and ripening. Front. Plant Sci. https://doi.org/10.3389/fpls.2013.00079 (2013).Kataoka, K., Yashiro, Y., Habu, T., Sunamoto, K. & Kitajima, A. The addition of gibberellic acid to auxin solutions increases sugar accumulation and sink strength in developing auxin-induced parthenocarpic tomato fruits. Sci. Hortic. 123, 228–233. https://doi.org/10.1016/j.scienta.2009.09.001 (2009).Zhang, C. X., Tanabe, K., Tamura, F., Itai, A. & Yoshida, M. Roles of gibberellins in increasing sink demand in Japanese pear fruit during rapid fruit growth. Plant Growth Regul. 52, 161–172. https://doi.org/10.1007/s10725-007-9187-x (2007).Shinozaki, Y. et al. High-resolution spatiotemporal transcriptome mapping of tomato fruit development and ripening. Nat. Commun. https://doi.org/10.1038/s41467-017-02782-9 (2018).Ariizumi, T., Shinozaki, Y. & Ezura, H. Genes that influence yield in tomato. Breed. Sci. 63, 3–13. https://doi.org/10.1270/jsbbs.63.3 (2013).Azzi, L. et al. Fruit growth-related genes in tomato. J. Exp. Bot. 66, 1075–1086. https://doi.org/10.1093/jxb/eru527 (2015).Lemaire-Chamley, M. et al. Changes in transcriptional profiles are associated with early fruit tissue specialization in tomato. Plant Physiol. 139, 750–769. https://doi.org/10.1104/pp.105.063719 (2005).Tanksley, S. D. The genetic, developmental, and molecular bases of fruit size and shape variation in tomato. Plant Cell 16, S181–S189. https://doi.org/10.1105/tpc.018119 (2004).Allan, A. C. & Espley, R. V. MYBs drive novel consumer traits in fruits and vegetables. Trends Plant Sci. 23, 693–705. https://doi.org/10.1016/j.tplants.2018.06.001 (2018).Karlova, R. et al. Transcriptional control of fleshy fruit development and ripening. J. Exp. Bot. 65, 4527–4541. https://doi.org/10.1093/jxb/eru316 (2014).Rohrmann, J. et al. Combined transcription factor profiling, microarray analysis and metabolite profiling reveals the transcriptional control of metabolic shifts occurring during tomato fruit development. Plant J. 68, 999–1013. https://doi.org/10.1111/j.1365-313X.2011.04750.x (2011).Zhang, S. B. et al. Spatiotemporal transcriptome provides insights into early fruit development of tomato (Solanum lycopersicum). Sci. Rep. https://doi.org/10.1038/srep23173 (2016).Corrales, A. R. et al. Characterization of tomato Cycling Dof factors reveals conserved and new functions in the control of flowering time and abiotic stress responses. J. Exp. Bot. 65, 995–1012. https://doi.org/10.1093/jxb/ert451 (2014).Renau-Morata, B. et al. Ectopic Expression of CDF3 genes in tomato enhances biomass production and yield under salinity stress conditions. Front. Plant Sci. 8, 18. https://doi.org/10.3389/fpls.2017.00660 (2017).Guillet, C. et al. Regulation of the fruit-specific PEP carboxylase SlPPC2 promoter at early stages of tomato fruit development. PLoS ONE https://doi.org/10.1371/journal.pone.0036795 (2012).Bourdon, M. et al. Evidence for karyoplasmic homeostasis during endoreduplication and a ploidy-dependent increase in gene transcription during tomato fruit growth. Development 139, 3817–3826. https://doi.org/10.1242/dev.084053 (2012).de Jong, M. et al. Solanum lycopersicum AUXIN RESPONSE FACTOR 9 regulates cell division activity during early tomato fruit development. J Exp. Bot. 66, 3405–3416. https://doi.org/10.1093/jxb/erv152 (2015).Serrani, J. C., Fos, M., Atares, A. & Garcia-Martinez, J. L. Effect of gibberellin and auxin on parthenocarpic fruit growth induction in the cv micro-tom of tomato. J. Plant Growth Regul. 26, 211–221. https://doi.org/10.1007/s00344-007-9014-7 (2007).Srivastava, A. & Handa, A. K. Hormonal regulation of tomato fruit development: a molecular perspective. J. Plant Growth Regul. 24, 67–82. https://doi.org/10.1007/s00344-005-0015-0 (2005).Exposito-Rodriguez, M., Borges, A. A., Borges-Perez, A., Hernandez, M. & Perez, J. A. Cloning and biochemical characterization of ToFZY, a tomato gene encoding a flavin monooxygenase involved in a tryptophan-dependent auxin biosynthesis pathway. J. Plant Growth Regul. 26, 329–340. https://doi.org/10.1007/s00344-007-9019-2 (2007).Li, Z. M. et al. High invertase activity in tomato reproductive organs correlates with enhanced sucrose import into, and heat tolerance of, young fruit. J. Exp. Bot. 63, 1155–1166. https://doi.org/10.1093/jxb/err329 (2012).Wang, F., Sanz, A., Brenner, M. L. & Smith, A. Sucrose synthase, starch accumulation, and tomato fruit sink strength. Plant Physiol. 101, 321–327. https://doi.org/10.1104/pp.101.1.321 (1993).Pattison, R. J. et al. Comprehensive tissue-specific transcriptome analysis reveals distinct regulatory programs during early tomato fruit development. Plant Physiol. 168, 1684-U1002. https://doi.org/10.1104/pp.15.00287 (2015).Musseau, C. et al. Identification of two new mechanisms that regulate fruit growth by cell expansion in tomato. Front. Plant Sci. https://doi.org/10.3389/fpls.2017.00988 (2017).Shiota, H., Sudoh, T. & Tanaka, I. Expression analysis of genes encoding plasma membrane aquaporins during seed and fruit development in tomato. Plant Sci. 171, 277–285. https://doi.org/10.1016/j.plantsci.2006.03.021 (2006).Wang, L. et al. Ectopically expressing MdPIP1;3, an aquaporin gene, increased fruit size and enhanced drought tolerance of transgenic tomatoes. BMC Plant Biol. https://doi.org/10.1186/s12870-017-1212-2 (2017).Long, S. P., Zhu, X. G., Naidu, S. L. & Ort, D. R. Can improvement in photosynthesis increase crop yields?. Plant Cell Environ. 29, 315–330. https://doi.org/10.1111/j.1365-3040.2005.01493.x (2006).D’Aoust, M. A., Yelle, S. & Nguyen-Quoc, B. Antisense inhibition of tomato fruit sucrose synthase decreases fruit setting and the sucrose unloading capacity of young fruit. Plant Cell 11, 2407–2418. https://doi.org/10.1105/tpc.11.12.2407 (1999).Liu, T., Hu, Y. Q. & Li, X. X. Characterization of a chestnut FLORICAULA/LEAFY homologous gene. Afr. J. Biotechnol. 10, 3978–3985 (2011).Fridman, E., Carrari, F., Liu, Y. S., Fernie, A. R. & Zamir, D. Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science 305, 1786–1789. https://doi.org/10.1126/science.1101666 (2004).Ikeda, H. et al. Dynamic metabolic regulation by a chromosome segment from a wild relative during fruit development in a tomato introgression line, IL8-3. Plant Cell Physiol. 57, 1257–1270. https://doi.org/10.1093/pcp/pcw075 (2016).Ho, L. C. Partitioning of assimilates in fruiting tomato plants. Plant Growth Regul. 2, 277–285. https://doi.org/10.1007/bf00027287 (1984).Beauvoit, B. et al. Putting primary metabolism into perspective to obtain better fruits. Ann. Bot. 122, 1–21. https://doi.org/10.1093/aob/mcy057 (2018).Corrales, A. R. et al. Multifaceted role of cycling DOF factor 3 (CDF3) in the regulation of flowering time and abiotic stress responses in Arabidopsis. Plant Cell Environ. 40, 748–764. https://doi.org/10.1111/pce.12894 (2017).Carrari, F. & Fernie, A. R. Metabolic regulation underlying tomato fruit development. J. Exp. Bot. 57, 1883–1897. https://doi.org/10.1093/jxb/erj020 (2006).Osorio, S. et al. Alteration of the interconversion of pyruvate and malate in the plastid or cytosol of ripening tomato fruit invokes diverse consequences on sugar but similar effects on cellular organic acid, metabolism, and transitory starch accumulation. Plant Physiol. 161, 628–643. https://doi.org/10.1104/pp.112.211094 (2013).Gillaspy, G., Bendavid, H. & Gruissem, W. Fruits—a developmental perspective. Plant Cell 5, 1439–1451. https://doi.org/10.1105/tpc.5.10.1439 (1993).Carrera, E., Ruiz-Rivero, O., Peres, L. E. P., Atares, A. & Garcia-Martinez, J. L. Characterization of the procera tomato mutant shows novel functions of the SlDELLA protein in the control of flower morphology, cell division and expansion, and the auxin-signaling pathway during fruit-set and development. Plant Physiol. 160, 1581–1596. https://doi.org/10.1104/pp.112.204552 (2012).Chen, S. et al. Identification and characterization of tomato gibberellin 2-oxidases (GA2oxs) and effects of fruit-specific SlGA2ox1 overexpression on fruit and seed growth and development. Hortic. Res. https://doi.org/10.1038/hortres.2016.59 (2016).Mignolli, F., Vidoz, M. L., Picciarelli, P. & Mariotti, L. Gibberellins modulate auxin responses during tomato (Solanum lycopersicum L.) fruit development. Physiol. Plant. 165, 768–779. https://doi.org/10.1111/ppl.12770 (2019).De Jong, M., Wolters-Arts, M., Feron, R., Mariani, C. & Vriezen, W. H. The Solanum lycopersicum auxin response factor 7 (SlARF7) regulates auxin signaling during tomato fruit set and development. Plant J. 57, 160–170. https://doi.org/10.1111/j.1365-313X.2008.03671.x (2009).Ellul, P. et al. The ploidy level of transgenic plants in Agrobacterium-mediated transformation of tomato cotyledons (Lycopersicon esculentum L. Mill.) is genotype and procedure dependent. Theor. Appl. Genet. 106, 231–238. https://doi.org/10.1007/s00122-002-0928-y (2003).Renau-Morata, R. et al. The use of corms produced under storage at low temperatures as a source of explants for the in vitro propagation of saffron reduces contamination levels and increases multiplication rates. Ind. Crops Prod. 46, 97–104. https://doi.org/10.1016/j.indcrop.2013.01.013 (2013).Cebolla-Cornejo, J., Valcarcel, M., Herrero-Martinez, J. M., Rosello, S. & Nuez, F. High efficiency joint CZE determination of sugars and acids in vegetables and fruits. Electrophoresis 33, 2416–2423. https://doi.org/10.1002/elps.201100640 (2012).Nebauer, S. G. et al. Influence of crop load on the expression patterns of starch metabolism genes in alternate-bearing citrus trees. Plant Physiol. Biochem. 80, 105–113. https://doi.org/10.1016/j.plaphy.2014.03.032 (2014).Hoffman, N. E., Ko, K., Milkowski, D. & Pichersky, E. Isolation and characterization of tomato cDNA and genomic clones encoding the ubiquitin gene UBI3. Plant Mol. Biol. 17, 1189–1201. https://doi.org/10.1007/bf00028735 (1991).Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(−Delta Delta C) method. Methods 25, 402–408. https://doi.org/10.1006/meth.2001.1262 (2001).Miedes, E. & Lorences, E. P. Changes in cell wall pectin and pectinase activity in apple and tomato fruits during Penicillium expansum infection. J. Sci. Food Agric. 86, 1359–1364 (2006)

    The Arabidopsis Transcription Factor CDF3 Is Involved in Nitrogen Responses and Improves Nitrogen Use Efficiency in Tomato

    Get PDF
    Nitrate is an essential macronutrient and a signal molecule that regulates the expression of multiple genes involved in plant growth and development. Here, we describe the participation of Arabidopsis DNA binding with one finger (DOF) transcription factor CDF3 in nitrate responses and shows that CDF3 gene is induced under nitrate starvation. Moreover, knockout cdf3 mutant plants exhibit nitrate-dependent lateral and primary root modifications, whereas CDF3 overexpression plants show increased biomass and enhanced root development under both nitrogen poor and rich conditions. Expression analyses of 35S::CDF3 lines reveled that CDF3 regulates the expression of an important set of nitrate responsive genes including, glutamine synthetase-1, glutamate synthase-2, nitrate reductase-1, and nitrate transporters NRT2.1, NRT2.4, and NRT2.5 as well as carbon assimilation genes like PK1 and PEPC1 in response to N availability. Consistently, metabolite profiling disclosed that the total amount of key N metabolites like glutamate, glutamine, and asparagine were higher in CDF3-overexpressing plants, but lower in cdf3-1 in N limiting conditions. Moreover, overexpression of CDF3 in tomato increased N accumulation and yield efficiency under both optimum and limiting N supply. These results highlight CDF3 as an important regulatory factor for the nitrate response, and its potential for improving N use efficiency in crops
    corecore