175 research outputs found

    Identifying fire plumes in the Arctic with tropospheric FTIR measurements and transport models

    Get PDF
    We investigate Arctic tropospheric composition using ground-based Fourier transform infrared (FTIR) solar absorption spectra, recorded at the Polar Environment Atmospheric Research Laboratory (PEARL, Eureka, Nunavut, Canada, 80°05' N, 86°42' W) and at Thule (Greenland, 76°53' N, −68°74' W) from 2008 to 2012. The target species, carbon monoxide (CO), hydrogen cyanide (HCN), ethane (C_2H_6), acetylene (C_2H_2), formic acid (HCOOH), and formaldehyde (H_2CO) are emitted by biomass burning and can be transported from mid-latitudes to the Arctic. By detecting simultaneous enhancements of three biomass burning tracers (HCN, CO, and C_2H_6), ten and eight fire events are identified at Eureka and Thule, respectively, within the 5-year FTIR time series. Analyses of Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model back-trajectories coupled with Moderate Resolution Imaging Spectroradiometer (MODIS) fire hotspot data, Stochastic Time-Inverted Lagrangian Transport (STILT) model footprints, and Ozone Monitoring Instrument (OMI) UV aerosol index maps, are used to attribute burning source regions and travel time durations of the plumes. By taking into account the effect of aging of the smoke plumes, measured FTIR enhancement ratios were corrected to obtain emission ratios and equivalent emission factors. The means of emission factors for extratropical forest estimated with the two FTIR data sets are 0.40 ± 0.21 g kg^(−1) for HCN, 1.24 ± 0.71 g kg^(−1) for C_2H_6, 0.34 ± 0.21 g kg^(−1) for C_2H_2, and 2.92 ± 1.30 g kg^(−1) for HCOOH. The emission factor for CH_3OH estimated at Eureka is 3.44 ± 1.68 g kg^(−1). To improve our knowledge concerning the dynamical and chemical processes associated with Arctic pollution from fires, the two sets of FTIR measurements were compared to the Model for OZone And Related chemical Tracers, version 4 (MOZART-4). Seasonal cycles and day-to-day variabilities were compared to assess the ability of the model to reproduce emissions from fires and their transport. Good agreement in winter confirms that transport is well implemented in the model. For C_2H_6, however, the lower wintertime concentration estimated by the model as compared to the FTIR observations highlights an underestimation of its emission. Results show that modeled and measured total columns are correlated (linear correlation coefficient r > 0.6 for all gases except for H_2CO at Eureka and HCOOH at Thule), but suggest a general underestimation of the concentrations in the model for all seven tropospheric species in the high Arctic

    Methane emissions from dairies in the Los Angeles Basin

    Get PDF
    We estimate the amount of methane (CH_4) emitted by the largest dairies in the southern California region by combining measurements from four mobile solar-viewing ground-based spectrometers (EM27/SUN), in situ isotopic ^(13∕12)CH_4 measurements from a CRDS analyzer (Picarro), and a high-resolution atmospheric transport simulation with a Weather Research and Forecasting model in large-eddy simulation mode (WRF-LES). The remote sensing spectrometers measure the total column-averaged dry-air mole fractions of CH_4 and CO_2 (X_(CH)_4 and X_(CO)_2) in the near infrared region, providing information on total emissions of the dairies at Chino. Differences measured between the four EM27/SUN ranged from 0.2 to 22 ppb (part per billion) and from 0.7 to 3 ppm (part per million) for X_(CH)_4 and X_(CO)_2, respectively. To assess the fluxes of the dairies, these differential measurements are used in conjunction with the local atmospheric dynamics from wind measurements at two local airports and from the WRF-LES simulations at 111 m resolution. Our top-down CH_4 emissions derived using the Fourier transform spectrometers (FTS) observations of 1.4 to 4.8 ppt s^(−1) are in the low end of previous top-down estimates, consistent with reductions of the dairy farms and urbanization in the domain. However, the wide range of inferred fluxes points to the challenges posed by the heterogeneity of the sources and meteorology. Inverse modeling from WRF-LES is utilized to resolve the spatial distribution of CH_4 emissions in the domain. Both the model and the measurements indicate heterogeneous emissions, with contributions from anthropogenic and biogenic sources at Chino. A Bayesian inversion and a Monte Carlo approach are used to provide the CH_4 emissions of 2.2 to 3.5 ppt s^(−1) at Chino

    Trends in the Vertical Distribution of Ozone: A Comparison of Two Analyses of Ozonesonde Data

    Get PDF
    We present the results of two independent analyses of ozonesonde measurements of the vertical profile of ozone. For most of the ozonesonde stations we use data that were recently reprocessed and reevaluated to improve their quality and internal consistency. The two analyses give similar results for trends in ozone. We attribute differences in results primarily to differences in data selection criteria and in utilization of data correction factors, rather than in statistical trend models. We find significant decreases in stratospheric ozone at all stations in middle and high latitudes of the northern hemisphere from 1970 to 1996, with the largest decreases located between 12 and 21 km, and trends of -3 to -10 %/decade near 17 km. The decreases are largest at the Canadian and the most northerly Japanese station, and are smallest at the European stations, and at Wallops Island, U.S.A. The mean mid-latitude trend is largest, -7 %/decade, from 12 to 17.5 km for 1970-96. For 1980-96, the decrease is more negative by 1-2 %/decade, with a maximum trend of -9 %/decade in the lowermost stratosphere. The trends vary seasonally from about 12 to 17.5 km, with largest ozone decreases in winter and spring. Trends in tropospheric ozone are highly variable and depend on region. There are decreases or zero trends at the Canadian stations for 1970-96, and decreases of -2 to -8 %/decade for the mid-troposphere for 1980-96; the three European stations show increases for 1970-96, but trends are close to zero for two stations for 1980-96 and positive for one; there are increases in ozone for the three Japanese stations for 1970-96, but trends are either positive or zero for 1980-96; the U.S. stations show zero or slightly negative trends in tropospheric ozone after 1980. It is not possible to define reliably a mean tropospheric ozone trend for northern mid-latitudes, given the small number of stations and the large variability in trends. The integrated column trends derived from the sonde data are consistent with trends derived from both surface based and satellite measurements of the ozone column

    A roadmap to estimating agricultural ammonia volatilization over Europe using satellite observations and simulation data

    Get PDF
    Ammonia (NH3) is one of the most important gases emitted from agricultural practices. It affects air quality and the overall climate and is in turn influenced by long-term climate trends as well as by short-term fluctuations in local and regional meteorology. Previous studies have established the capability of the Infrared Atmospheric Sounding Interferometer (IASI) series of instruments, aboard the Metop satellites, to measure ammonia from space since 2007. In this study, we explore the interactions between atmospheric ammonia, land and meteorological variability, and long-term climate trends in Europe. We investigate the emission potential (Γsoil) of ammonia from the soil, which describes the soil–atmosphere ammonia exchange. Γsoil is generally calculated in-field or in laboratory experiments; here, and for the first time, we investigate a method which assesses it remotely using satellite data, reanalysis data products, and model simulations. We focus on ammonia emission potential in March 2011, which marks the start of growing season in Europe. Our results show that Γsoil ranges from 2 × 103 to 9.5 × 104 (dimensionless) in fertilized cropland, such as in the North European Plain, and is of the order of 10–102 in a non-fertilized soil (e.g., forest and grassland). These results agree with in-field measurements from the literature, suggesting that our method can be used in other seasons and regions in the world. However, some improvements are needed in the determination of mass transfer coefficient k (m s−1), which is a crucial parameter to derive Γsoil. Using a climate model, we estimate the expected increase in ammonia columns by the end of the century based on the increase in skin temperature (Tskin), under two different climate scenarios. Ammonia columns are projected to increase by up to 50 %, particularly in eastern Europe, under the SSP2-4.5 scenario and might even double (increase of 100 %) under the SSP5-8.5 scenario. The increase in skin temperature is responsible for a formation of new hotspots of ammonia in Belarus, Ukraine, Hungary, Moldova, parts of Romania, and Switzerland.</p

    Association between AIRE gene polymorphism and rheumatoid arthritis: a systematic review and meta-analysis of case-control studies.

    Get PDF
    Autoimmune regulator (AIRE) is a transcription factor that functions as a novel player in immunological investigations. In the thymus, it has a pivotal role in the negative selection of naive T-cells during central tolerance. Experimental studies have shown that single nucleotide polymorphism (SNP) alters transcription of the AIRE gene. SNPs thereby provide a less efficient negative selection, propagate higher survival of autoimmune T-cells, and elevate susceptibility to autoimmune diseases. To date, only rheumatoid arthritis (RA) has been analysed by epidemiological investigations in relation to SNPs in AIRE. In our meta-analysis, we sought to encompass case-control studies and confirm that the association between SNP occurrence and RA. After robust searches of Embase, PubMed, Cochrane Library, and Web of Science databases, we found 19 articles that included five independent studies. Out of 11 polymorphisms, two (rs2075876, rs760426) were common in the five case-control studies. Thus, we performed a meta-analysis for rs2075876 (7145 cases and 8579 controls) and rs760426 (6696 cases and 8164 controls). Our results prove that rs2075876 and rs760426 are significantly associated with an increased risk of RA in allelic, dominant, recessive, codominant heterozygous, and codominant homozygous genetic models. These findings are primarily based on data from Asian populations

    Genetic variation in FOXO3 is associated with reductions in inflammation and disease activity in inflammatory polyarthritis

    Get PDF
    OBJECTIVE: Genetic variation in FOXO3 (tagged by rs12212067) has been associated with a milder course of rheumatoid arthritis (RA) and shown to limit monocyte-driven inflammation through a transforming growth factor β1–dependent pathway. This genetic association, however, has not been consistently observed in other RA cohorts. We sought to clarify the contribution of FOXO3 to prognosis in RA by combining detailed analysis of nonradiographic disease severity measures with an in vivo model of arthritis. METHODS: Collagen-induced arthritis, the most commonly used mouse model of RA, was used to assess how Foxo3 contributes to arthritis severity. Using clinical, serologic, and biochemical methods, the arthritis that developed in mice carrying a loss-of-function mutation in Foxo3 was compared with that which occurred in littermate controls. The association of rs12212067 with nonradiographic measures of RA severity, including the C-reactive protein level, the swollen joint count, the tender joint count, the Disease Activity Score in 28 joints, and the Health Assessment Questionnaire score, were modeled longitudinally in a large prospective cohort of patients with early RA. RESULTS: Loss of Foxo3 function resulted in more severe arthritis in vivo (both clinically and histologically) and was associated with higher titers of anticollagen antibodies and interleukin-6 in the blood. Similarly, rs12212067 (a single-nucleotide polymorphism that increases FOXO3 transcription) was associated with reduced inflammation, both biochemically and clinically, and with lower RA activity scores. CONCLUSION: Consistent with its known role in restraining inflammatory responses, FOXO3 limits the severity of in vivo arthritis and, through genetic variation that increases its transcription, is associated with reduced inflammation and disease activity in RA patients, effects that result in less radiographic damage

    SMAD3 rs17228212 Gene Polymorphism Is Associated with Reduced Risk to Cerebrovascular Accidents and Subclinical Atherosclerosis in Anti-CCP Negative Spanish Rheumatoid Arthritis Patients

    Get PDF
    Rheumatoid arthritis (RA) is a complex polygenic inflammatory disease associated with accelerated atherosclerosis and increased risk of cardiovascular (CV) disease. Previous genome-wide association studies have described SMAD3 rs17228212 polymorphism as an important signal associated with CV events. The aim of the present study was to evaluate for the first time the relationship between this gene polymorphism and the susceptibility to CV manifestations and its potential association with the presence of subclinical atherosclerosis assessed by the evaluation of carotid intima-media thickness (cIMT) in patients with RA

    Comparisons of the Orbiting Carbon Observatory-2 (OCO-2) XCO2_{CO_{2}} measurements with TCCON

    Get PDF
    NASA\u27s Orbiting Carbon Observatory-2 (OCO-2) has been measuring carbon dioxide column-averaged dry-air mole fraction, XCO2_{CO_{2}}, in the Earth\u27s atmosphere for over 2 years. In this paper, we describe the comparisons between the first major release of the OCO-2 retrieval algorithm (B7r) and XCO2_{CO_{2}} from OCO-2\u27s primary ground-based validation network: the Total Carbon Column Observing Network (TCCON). The OCO-2 XCO2_{CO_{2}} retrievals, after filtering and bias correction, agree well when aggregated around and coincident with TCCON data in nadir, glint, and target observation modes, with absolute median differences less than 0.4 ppm and RMS differences less than 1.5 ppm. After bias correction, residual biases remain. These biases appear to depend on latitude, surface properties, and scattering by aerosols. It is thus crucial to continue measurement comparisons with TCCON to monitor and evaluate the OCO-2 XCO2_{CO_{2}} data quality throughout its mission
    corecore