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Abstract A decade after the first genome-wide associ-
ation study in rheumatoid arthritis (RA), a plethora of
genetic association studies have been published on RA
and its clinical or serological subtypes. We review the
major milestones in the study of the genetic architec-
ture of RA susceptibility, severity, and response to
treatment. We set the scientific context necessary for
non-geneticists to understand the potential clinical ap-
plications of human genetics and its significance for a
stratified approach to the management of RA in the
future.

History

Although it is well recognised that ankylosing spondylitis,
gout, and osteoarthritis have existed for several thousand
years, the situation is less clear for rheumatoid arthritis
(RA). Paleopathological evidence on skeletal remains dating
back to the time of pre-Columbian Indians would suggest that
RA is also an ancient disease, which might have been

affecting the lives of people for at least 4000 years [1].
However, despite the expansion of archaeology and the accu-
mulation of material to examine, the age and origin of RA are
still a matter of debate and controversy, as the distinction of
RA from other rheumatic diseases can rarely be made solely
on the examination of bones [2]. Nonetheless, several indica-
tions from medical and non-medical literature and from the
visual arts have suggested that RA has existed for many cen-
turies, but it was not until 3 August 1800 that the unequivocal
first diagnosis of RA was made by the French physician
Landré-Beauvais of Paris [3]. He described in detail the clin-
ical picture of the disease and originally called it Bgoutte
asthénique primitive^ (Bprimary asthenic gout^). His first nine
patients were all women; an early suggestion of a genetic
component to disease aetiology.

The nineteenth century saw the basic concepts of
heredity and evolution being established with the publi-
cation of the theories of evolution by the British scien-
tists, Charles Darwin and Alfred Wallace, in 1858 [4]
followed by the discovery in 1865 of the laws of he-
redity by the Austro-German Augustinian Friar Gregor
Mendel through his breeding experiments with peas [5].
These publications arose without any knowledge of the
existence of DNA, which was only discovered later, in
1869, by a Swiss physician and biologist, Friedrich
Miescher [6]. In this historical and scientific context,
the observation that patients with RA aggregated occa-
sionally in families supported the idea that the disease
was at least partially heritable, even if it did not follow
a Mendelian pattern of inheritance.

Research on the mechanisms of blood transfusion incom-
patibility and studies on skin transplant incompatibility
followed by the discovery of the major histocompatibility
complex (MHC) in the twentieth century further established
the scientific and experimental context for ground-breaking
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discoveries in the genetics of RA. For example, the practice of
mixing blood from two individuals before a transfusion to test
their compatibility or the experimental practice of mixing only
their lymphocytes to study their tissue compatibility or reac-
tivity led to the development of so-called mixed lymphocyte
cultures (MLC); in 1969, Gonzalo Astorga and Ralph
Williams observed a reduced reactivity of lymphocytes from
patients with RA when incubated together in MLC [7], indi-
cating that the tissues from patients with RA were Bmore
compatible^ with each other than any pair of randomly select-
ed healthy individuals—a further indication of a common ge-
netic background between patients with RA. Further develop-
ment of tissue typing using serological techniques in addition
to MLC was used by Peter Stastny, who, between 1976 and
1978, described a strong association between MLC type Dw4
or serological type HLA-DRw4 and RA in white popula-
tions from the United States [8–10]. This association was
further found to be present with a limited number of other
specific types, namely, DR4 Dw14.1, DR4 Dw14.2, and
DR4 Dw15.

In the 1990s, DNA-based techniques superseded
serotyping and provided much greater precision. The MLC
and serologic markers listed above were found to correspond
to different alleles of the HLA-DRB1 gene, each coding for a
different amino acid sequence. These alleles were subsequent-
ly renamed HLA-DRB1*04:01 (for DR4 Dw4) and HLA-
DRB1*04:04, *04:08, and *04:05, for DR4 Dw14.1, DR4
Dw14.2, and DR4 Dw15, respectively.

Definitions, techniques, and nomenclature

In animals and humans, the MHC region comprises a set of
genes encoding proteins mainly involved in immune function.
The human MHC is synonymous with the human leukocyte
antigen (HLA) system, which lies on the short arm of chro-
mosome 6 at position 6p21.3. The classical HLA region is
highly variable (polymorphic) with, for example, over 1900
alleles for the HLA-DRB1 gene alone. A detailed description
of the HLA region is available online through the European
Bioinformatics Institute and the International Immunogenetics
Project [11]. As the techniques used to type HLA genes have
evolved over the years, the nomenclature for the different
alleles at individual HLA genes has changed. Originally, im-
munological typing methods were used, including serotyping
and cellular typing with MLC, later to be superseded by var-
ious DNA-based typing methods.

Immunological typing

Outside of rheumatology, the earliest typing was performed
using human sera reacting reproducibly to certain HLA types.
Over time, more specific sera were identified, which could

split one specificity into several. Then, MLC were developed
to achieve even more precise typing; in order to achieve re-
producibility, panels of reference cells were developed. As
sera and cells required continual updating, WHO international
histocompatibility workshops were held periodically. When a
consensus was achieved on a new antigenic specificity, it
would be assigned a new number with the designation Bw^
for Bworkshop.^ As a specificity became widely accepted, the
w would be dropped and a Bpermanent^ identifier would re-
place it. For example, in one workshop, a newly identified
specificity was given the name DRw4, and a few years later,
it was revised to DR4. BDR^ implied a serologically-based
typing, and BD^ a cellular typing. In this way, a single HLA
specificity could be either DR4 Dw4 or DR4 Dw10.

DNA-based typing

The use of sequence-specific oligonucleotide probes (SSOP)
is the most commonly used method to determine HLA alleles.
First, PCR amplification of a desired portion of DNA is per-
formed, such as a part of the DRB1 gene. Then, the amplified
section of DNA is probed with different non-radioactively
labelled SSOPs, which discriminate between different alleles.
This method is used in commercially available automated or
semi-automated HLA typing systems in many laboratories.
Another technique of DNA-based typing is often called
next-generation DNA-based typing and refers to the sequenc-
ing of DNA over the region of interest. This technique has
become much more affordable in recent years as the cost of
sequencing has reduced. A third technique has recently been
developed for research purposes [12]: typing with genotyping
microarrays. First, the genotype of single nucleotide polymor-
phisms (SNPs) located within the HLA region is performed by
using dense genotyping microarrays. As this will not allow
determination of all SNPs across the HLA region, missing
SNPs are then imputed in silico using reference panels of
complete DNA sequences from individuals of the same eth-
nicity (e.g., from the 1000 Genome Project). The third step
consists of imputing four-digit HLA alleles from SNP data.

Current nomenclature

The WHO Nomenclature Committee for Factors of the HLA
System revised the naming conventions for HLA alleles in
2010 [11, 13]. Each HLA allele is now named using a unique
identifier, which always starts with HLA, followed by a hy-
phen, followed by the name of the gene (e.g., DRB1), an
asterisk (*), and up to four sets of digits separated by colons
(i.e., HLA-DRB1*XX:XX:XX:XX). All alleles have at least a
four-digit code corresponding to the first two sets of digits.
The first set of digits describes the allele group or type, which
frequently corresponds to the serological type. The second set
of digits defines a specific HLA protein within the allele
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group. A so-called four-digit HLA type completely and un-
equivocally determines the protein structure at the amino acid
level. HLA identifiers which differ in the two first sets of
digits will designate two molecules differing by at least one
non-synonymous nucleotide substitution (i.e., one that chang-
es the amino acid sequence). The third and fourth sets of digits
are used to distinguish between non-coding nucleotide
variations.

Heritability of RA and subphenotypes

The clustering of RA cases within families has been a consis-
tent observation across studies and can be measured either as
λs, the sibling relative risk, or λr, the relative risk to first-
degree relatives (parents, children, and siblings) [14]. Values
for λs or λr have been reported to lie between 2 and 10,
consistent with an increased prevalence of RAwithin the fam-
ilies of affected individuals as compared to the general popu-
lation [15–20].

A complementary and more popular approach to measure
the genetic contribution to RA susceptibility is to determine
the proportion of the variance of the disease which is ex-
plained by genetic variations (i.e., the genetic contribution to
the disease), also called disease heritability [14]. Several dif-
ferent methodologies have been proposed to estimate herita-
bility of RA, but all have important shortcomings, which have
resulted in large variations in estimates.

One method to calculate heritability is based on the com-
parison between disease discordance in monozygotic and di-
zygotic twins. The most cited publications using this method
estimate a disease heritability of around 60% in the UK and
Finnish populations [21, 22], whilst a Danish study published
in 2002 found a heritability of 0% [23], revised to 12% in a
larger sample in a follow-up study in 2012 [24]. Interestingly,
one study calculated heritability separately for the two main
subsets of RA (anti-citrullinated protein antibodies (ACPA)
positive and negative disease) and found no difference in her-
itability between the two subsets (68% and 66%, respective-
ly). A main limitation of twin studies is sample size, as the
number of twin pairs available in these studies was modest.

A second method consists of estimating heritability from
familial aggregation using large population registers; this
method was applied in the Swedish total population and con-
cluded that heritability of ACPA-positive RA is around 50%,
but that heritability is only 20% for ACPA-negative RA [25].
This study is likely to represent the most reliable heritability
estimates to date given the sample size tested.

A third and increasingly popular method to calculate heri-
tability requires genome-wide genetic profiles from large
numbers of unrelated individuals [26]; one technique, called
genome-wide complex trait analysis (GCTA), has been suc-
cessfully applied to several complex traits [27], but results

from RA studies have produced highly varying estimates;
for example, heritability was estimated to be 52% in one study
[28] but 0% for ACPA-negative RA and 19% for ACPA-
positive RA in another [29].

Heritability can also be calculated for RA severity or re-
sponse to treatment in order to determine the quantitative role
of genetic factors on disease course or response to specific
interventions. By contrast to the calculation of heritability
for disease susceptibility, where healthy individuals have to
be incorporated in the study design as controls, heritability
calculations are performed in RA cases only (for example,
comparing globally the genetics of patients with erosive dis-
ease with that of patients without erosions). Using such an
approach, one study estimated the heritability of erosive dis-
ease in the Icelandic population to be 50% [30]. Three studies
have attempted to calculate the heritability of response to anti-
TNF treatment in RA in different populations: [31] found a
heritability of 45% for the post-treatment reduction in the 28
joint Disease Activity Score (DAS28) and 60% for the change
in Swollen Joint Count (SJC); Umićević et al. [32] reported a
heritability of 71% for the change in DAS28 and 87% for
change in SJC; however, Sieberts SK et al. [33] found only
an 18% heritability for non-response, but no genetic contribu-
tion to the prediction of response. These results should be
interpreted with caution, not only due to the limitations inherent
to the calculation of heritability but also because there is no
clear definition of Bsevere^ disease or Bresponse^ to treatment.

In summary, large variations in the calculation of heritabil-
ity are problematic as researchers cannot know how many
more genetic factors for RA susceptibility, severity, or treat-
ment response are yet to be identified, and therefore how
much effort and money to further invest in susceptibility, se-
verity, or treatment response gene identification.

Susceptibility

The genetics of RA susceptibility has already been covered in
detail in many reviews [34–40] and the most comprehensive
meta-analysis of all available GWAS datasets has now identi-
fied over 100 loci associated with RA susceptibility [41]; rath-
er than presenting an exhaustive listing of genetic loci associ-
ated with RA susceptibility, we will summarise the key find-
ings necessary to understand the translational potential of ge-
netics and the future directions of research.

HLA

In the late 1970s and early 1980s, several studies identified
associations between RA susceptibility and different alleles of
the HLA-DRB1 gene. Gregersen and colleagues [42] formu-
lated a unifying hypothesis in 1987 based on the observation
that all associated alleles had a 5-amino acid sequence within
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the third hypervariable region of the DRB1 gene at amino acid
positions 70 to 74 which were either 70QRRAA74,
70QKRAA74, or 70RRRAA74; this sequence was referred to
as the Bshared epitope^. The amino acids are located within
the peptide-binding groove of the HLA-DRβ1 protein, an
observation which strongly implicated antigen-presentation
in disease aetiology.

The advent of large scale genotyping using microarrays
and the collaboration of researchers in large international con-
sortia meant that by 2011, data was available from over 5000
seropositive (i.e., ACPA or rheumatoid factor positive) RA
cases and almost 15,000 unaffected controls, allowing an un-
precedented resolution and the refining of the shared epitope
hypothesis by Raychaudhuri and colleagues [43]. The stron-
gest genetic association with RA susceptibility was found
with the amino acid valine at position 11 (or a histidine at
position 13) of the HLA-DRB1 gene. Amino acids at posi-
tions 71 and 74, located within the original shared epitope
motif, represented secondary and tertiary independent effects,
respectively. Previously reported association with other amino
acid positions (for example with positions 67 [44], 70, 72, 73)
were not found to be independent of positions 11/13, 71, or
74. Although the sample size of this study was large, power
was still insufficient to distinguish between the effects of po-
sitions 11 and 13, since the carriage of a specific amino acid at
position 11 (e.g., a valine) almost unequivocally determined
the amino acid carried at position 13 (e.g., a histidine) and vice
versa, due to the high linkage disequilibrium between them.
Studies in larger sample sizes or in different ethnicities are
required to disentangle the effects of these two positions.

Interestingly, the various amino acids that can be carried at
each position can be ordered hierarchically according to the
size of their effect on susceptibility. For example, although the
carriage of a leucine at position 11 increases the risk of devel-
oping RA, the carriage of a valine increases that risk much
more, whilst the carriage of a serine reduces the risk [43]. As
one healthy person can carry an amino acid increasing the risk
at one specific position (e.g., valine at 11), but protective ami-
no acids at other positions (e.g., glutamic acid at 71 and leu-
cine at 74), the overall genetic risk conferred by HLA-DRB1
for an individual can only be determined after taking the com-
bination of the three HLA-DRB1 positions on a single chro-
mosome into consideration. Such a combination is called a
haplotype. Based on HLA-DRB1 positions 11, 71, and 74,
only 16 different haplotypes exist within the Caucasian pop-
ulation (Table 1) and only eight of these are frequent (occur-
ring in more than 5% of the population).

Similarly, a fourth smaller but statistically significant inde-
pendent effect has been detected within the HLA region in
patients with seropositive RA at HLA-B position 9, a fifth
effect at HLA-DPB1 position 9 [43], and a sixth effect at
HLA-A position 77 [46]. All six amino acid positions are
located within the peptide-binding grooves of four different

HLA molecules. This observation implicates antigenic pep-
tide presentation to T cells as key to disease causation [47].
The presence of class I and II HLA allelic associations links
both CD8+ and CD4+ Tcells to the aetiology and pathogenesis
of RA.

Studies in seronegative RA have identified associations at
HLA-DRB1 amino acid position 11 (but not 71 or 74) and
HLA-B position 9 within the peptide-binding grooves, corre-
sponding to HLA-DRB1*03 and HLA-B*08 [46, 48].
Although HLA-DRB1 position 11 is shared between ACPA+

and ACPA− RA, the effects of individual amino acid residues
are distinct; for example, a serine is protective for the devel-
opment of ACPA+ RA, but increases the risk of developing
ACPA− RA, whilst a glycine is protective for both subtypes.
These observations confirm that ACPA+ and ACPA− RA are
two genetically distinct entities and suggest that separate pep-
tide autoantigens may be implicated in their pathogenesis.

Non-HLA

Prior to 2007, candidate gene association studies had identi-
fied few genetic susceptibility loci for ACPA+ RA. However,
those that were identified conferred large effect sizes. For
example, association with a missense polymorphism of the
PTPN22 gene with RA was widely replicated in all popula-
tions in which the variant was present at a reasonable frequen-
cy [49]; interestingly, no association was found in East Asian
populations where the variant is rare.

The advent of genome-wide association studies (GWAS) in
2007 allowed the discovery of a large number of non-HLA
markers for ACPA+ RA; large international consortia and
meta-analysis permitted a massive increase in sample size
and power in Caucasian and Asian populations [50, 51].
This approach culminated in 2014 with the publication of a
transethnic mega-meta-analysis of all available GWAS
datasets worldwide, comprising data from over 100,000 sub-
jects of European and Asian ancestries (29,880 RA cases and
73,758 controls) for around 10 million SNPs [41]. Since then,
further RA susceptibility risk loci have been identified (e.g.,
BACH2 [52], 22q12 [53], CDK5RAP2, and DPP4 [54],
SLC8A3 [55]), bringing the total number of associations out-
side the HLA to 106 (Fig. 1). On average, each individual
non-HLA locus explains 0.08% of the variance of the disease,
and cumulatively, all risk loci, including those located within
the HLA, only explain 19.5% of the disease variance, or 39%
of disease heritability (assuming 50% heritability). Apart from
HLA associations and PTPN22, most risk alleles harbour
small effect sizes, with odds ratios for risk alleles between
1.01 and 1.20.

The 106 ACPA+ RA susceptibility loci discussed are all
considered to be confirmed associations because the statistical
evidence for association (p value) was below the threshold for
claims of genome-wide significance (<5 × 10−8). Fewer robust
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statistical associations have been reported for ACPA− RA,
most likely because sample sizes are in general smaller for
this more heterogeneous disease entity. Most genetic associa-
tions have been reported in single studies and have not been
replicated independently. Four GWAS for ACPA− RA were
unable to identify any non-HLA association below genome-
wide significance [48, 54, 56, 57]. Indeed, ANKRD55 is the
only locus to be associated with ACPA− RA at genome-wide
significance levels [58, 59], and is also associated with other
autoimmune diseases, including ACPA+ RA, juvenile idio-
pathic arthritis [60], and multiple sclerosis [61]. These studies
have revealed that, whilst ACPA−RA and ACPA+ RA are two
genetically distinct subsets of RA, each with its specific set of
susceptibility polymorphisms, they also share several genetic
associations. For example, AFF3, CCR6, CCL21, IL2RA,
and CD28 are associated with ACPA+ RA susceptibility but
not with ACPA− RA, whilst markers at TNFAIP3, C5orf30,
STAT4, ANKRD55, BLK, and PTPN22 are associated with
both serotypes [62]. By contrast, CLYBL [48], SMIM21 [48],
SPP1 [63], CLEC16A [64], IRF5 [65], DCIR [66, 67],
LEMD2, CSMD1, FCRL3 [57], IL-33 [68], PRL [59], and

NFIA [59] have been reported to be associated with ACPA−

RA (although not at genome-wide significance thresholds),
and many of these markers are not associated with ACPA+

RA.

Variations across ethnicities

Ethnogenetic heterogeneity in RA exits [69] with genetic as-
sociations specific to one population. Cardinal examples in-
clude the association of HLA-DRB1*09:01 with RA suscep-
tibility in Asian populations and PTPN22 in Caucasian
populations.

Although the frequencies of four-digit HLA-DRB1 alleles
are highly variable across populations, recent large scale stud-
ies have demonstrated that the same amino acid residues and
positions confer risk to ACPA+ RA in Asian and European
populations [70]. Though positions 11 and 13 are tightly
linked in European populations, position 13 is the strongest
association with RA susceptibility in Asian populations [70],
and the observed difference in association from European
populations was explained mainly by DRB1∗09:01. Studies

Table 1 Sixteen HLA-DRB1 haplotype classification based on amino acids at positions 11, 71, and 74

Position 11 Position 71 Position 74 Haplotype name Classical HLA-DRB1 alleles Haplotype
frequency
(%)

OR for RA
susceptibility

OR for RA
severity

Valine Lysine Alanine VKA-haplotype *04:01 11 4.4 1.8

Valine Arginine Alanine VRA-haplotype *04:08, *04:05, *04:04,
*10:01

6 4.2 1.8

Leucine Arginine Alanine LRA-haplotype *01:02, *01:01 11 2.2 1.5

Proline Arginine Alanine PRA-haplotype *16:01 1 2.0 –

Valine Arginine Glutamic
acid

VRE-haplotype *04:03, *04:07 1 1.6 –

Aspartic
acid

Arginine Glutamic
acid

DRE-haplotype *09:01 1 1.6 –

Valine Glutamic
acid

Alanine VEA-haplotype *04:02 1 1.4 –

Serine Lysine Alanine SKA-haplotype *13:03 1 1.0 –

Proline Alanine Alanine PAA-haplotype *15:01, *15:02 14 1.0 1.0

Glycine Arginine Glycine GRQ-haplotype *07:01 13 0.9 1.0

Serine Arginine Alanine SRA-haplotype *11:01, *11:04, *12:01 10 0.9 1.1

Serine Arginine Glutamic
acid

SRE-haplotype *14:01 3 0.8 –

Leucine Glutamic
acid

Alanine LEA-haplotype *01:03 0.4 0.7 –

Serine Arginine Leucine SRL-haplotype *08:01, *08:04 3 0.7 –

Serine Lysine Arginine SKR-haplotype *03:01 13 0.6 0.9

Serine Glutamic
acid

Alanine SEA-haplotype *11:02, *11:03, *13:01,
*13:02

11 0.6 0.7

Hierarchical classification of HLA-DRB1 haplotypes based on their effect size for susceptibility to RA [43] and for severity (presence of erosive disease
[45]). Haplotype names are derived from one-letter amino acid codes. The classical shared epitope alleles correspond to the VKA-, VRA-, and LRA-
haplotypes. The column BClassical HLA-DRB1 alleles^ shows only some examples of 4-digit HLA types corresponding to the new classification. High-
frequency haplotypes (≥5% general Caucasian population) are indicated in bold. Effect sizes are only given for these haplotypes for severity, as the study
by Viatte et al. [45] was underpowered to evaluate accurately effect sizes of low frequency haplotypes
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in African Americans also identified position 13 as the main
association with RA susceptibility [71].

The main reason for differential effects across populations
of different ancestries (within the HLA or outside the HLA,
e.g., PTPN22) is a variation of the allele frequency: the lack of
associations in a specific population can be explained by the
monomorphism of the locus in that population or by a very
low allele frequency, prohibiting sufficient power to detect the
effect. In general, the overwhelming majority of RA suscep-
tibility loci are shared across populations [37, 38, 41].

Insights into pathogenesis

The functional characterisation of the mechanisms of actions
of RA susceptibility SNPs in disease causation has proved to
be a challenging task, as only a minority of SNPs affect the
protein coding sequence (e.g., HLA or PTPN22 SNPs). The
vast majority of genetic susceptibility variants are located out-
side coding sequences or in gene deserts. It has been sug-
gested that susceptibility variants exert their effect by
disrupting the function of unknown DNA elements (for exam-
ple, as yet unidentified enhancers). In addition, for a number
of susceptibility alleles, the reported risk locus is likely

representing a highly correlated proxy for the as yet unidenti-
fied causal allele. As a result of these caveats, the gene name
assigned to a risk locus is frequently the closest or most com-
pelling biologic candidate gene, although there might not be
any direct evidence that its function is disrupted by the risk
allele. Despite these limitations, GWAS have nonetheless
identified pathways likely to be involved in RA pathogenesis,
such as the CD40 signalling pathway (with RA susceptibility
SNPs mapping close to the CD40, TRAF1, TRAF6,
TNFAIP3, NF-κB (c-Rel) genes) or the T cell receptor
(TCR) signalling pathway (PTPN22, RasGRP, PKC-θ,
TNFAIP3, TRAF6, etc.) [37]. With HLA-DRB1 expressed
on antigen-presenting cells (APC), the interaction between
APCs and CD4+ T cells is likely to play a central role in the
pathogenesis of the disease.

Several experimental strategies may be used to systemati-
cally identify the target genes and target cells of RA suscepti-
bility SNPs: (A) the identification of genes, the expression
level of which is correlated with the presence of a specific
SNP. Such SNPs are called expression quantitative trait loci
(eQTLs). eQTL studies have allowed the identification of the
target genes of several RA susceptibility loci [72]; (B) the
study of chromatin marks (epigenetics) overlapping

Fig. 1 Cumulative proportion of the observed variance in rheumatoid
arthritis susceptibility explained thus far by genetic susceptibility loci
identified to date across Asian and Caucasian cohorts. Odds ratios (left
axis) for RA genetic susceptibility loci are presented in the approximate
chronological order of discovery (new associations from the study by
Okada [41] are shown in 2013). The proportion of the variance
explained (right axis) is indicated by the black line. A 0.5% disease
prevalence was assumed for calculation. In the beginning of 2017,
approximately 19.5% of phenotypic variance had been accounted for

genetically. On average, every SNP outside the HLA explains 0.08% of
the total phenotypic variance. For simplification, every locus is
represented once, even if multiple independent effects were identified
(except for TNFAIP3 and TRAF1/CDK5RAP2, where two independent
effects are reported). The OR for theMHC represents the largest OR for a
SNP across the MHC, but the % explained variance has been calculated
for multiple independent effects across the MHC. Abbreviation: RA
rheumatoid arthritis, OR odds ratio
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susceptibility variants and the integration of gene expression
patterns in different cell types has allowed assignment of cer-
tain SNPs to certain cell types [73, 74]; and (C) molecular
techniques (for example Capture Hi-C) have been used to
characterise chromatin conformation and identified long-
range interactions between genetic variants associated with
RA and their functional targets in B and T cell lines [75].

So far, these studies [72–79] have concluded that (1) many
susceptibility variants may not interact with the nearest gene,
but with genes situated several megabases away; (2) the ef-
fects of genetic variants are context-specific, i.e., will vary
according to the cell type and stimulatory conditions present;
and (3) regions associated with different autoimmune diseases
interact with the same promoter, which suggests common au-
toimmune gene targets.

Severity

The identification of genetic markers of RA outcome is a
much more complicated task than the identification of suscep-
tibility markers, as several methodological challenges have to
be overcome. First, the definition of disease severity is not
standardised; second, disease outcome varies over time; third,
the sample sizes in prospective cohorts of patients with good
quality longitudinal data on disease outcome are modest and,
finally, statistical modelling is complex, as several outcome
variables are continuous, non-normally distributed and affect-
ed by time-varying confounders, including treatment.

Despite these challenges, multiple studies have identified
HLA-DRB1 alleles as markers of radiological damage in RA
[80]; for example, a well-powered study has recently shown
that the risk hierarchy defined by the 16 HLA-DRB1 suscep-
tibility haplotypes (i.e., defined by positions 11/13, 71, and 74,
See Table 1) was correlated between disease susceptibility,
erosive damage, and mortality: thus, the major genetic
markers of disease susceptibility in the HLA-DRB1 gene are
also markers of severity [45]. Valine at position 11 is the
strongest genetic predictor for the development of erosions,
radiographic damage, mortality, and poor outcome in general,
including non-radiographic measures of disease activity/
outcome [45, 81]. A serine at the same position is protective
against radiographic damage and poor outcome [45, 81]. One
interesting observation was that effect sizes for disease out-
come were systematically smaller than those observed for sus-
ceptibility (Table 1). Classification of patients with RA into
different prognostic categories could be performed using
HLA-DRB1 susceptibility markers, but the proportion of the
variance of radiographic damage explained by HLA markers
remains too low to be clinically useful.

Although most of the effect of HLA-DRB1 on disease
severity is mediated by ACPA, there is some evidence emerg-
ing that HLA-DRB1 amino acids may regulate the level of

laboratory inflammation (as measured by CRP) and clinical
inflammation (disease activity score at 28 joints (DAS28) or
Swollen Joint Count) through different biological pathways,
some of which are likely to be independent of ACPA [45, 81]
(Fig. 2).

Few GWAS have been performed for RA severity [82, 83],
and most studies reporting genetic associations with radio-
graphic outcome are candidate gene association studies
(Table 2). Very few studies have reported associations below
genome-wide significance for loci located outside the HLA
region [83], and the replication rate of these associations in
independent datasets has been very low [83]. Apart fromHLA
loci and SNPs located near TRAF1, which have been consis-
tently associated with radiographic damage and replicated in
several independent cohorts by independent research groups
across different populations, no other genetic locus can be
regarded as a confirmed association with radiographic out-
come in RA, as replications by independent groups of re-
searchers in large cohorts are lacking. Interestingly, a few
RA severity SNPs have been followed up in functional studies
to increase confidence that they are true positive associations
and to understand the pathogenesis of severity: a SNP
(rs12212067: T>G) in the FOXO3A gene region, which is
not associated with RA susceptibility, has been reported to
be associated with disease course in several TNF-mediated
conditions, including RA [94]. The mechanism of action in-
volves a reduction in the production of pro-inflammatory cy-
tokines, including TNFα, by monocytes. The differential re-
sponse of monocytes in RA patients dependent on the carriage
of the minor allele at FOXO3A is likely to be seen only in an
inflammatory context, therefore explaining the lack of associ-
ation with disease susceptibility.

The identification of the association of rs26232, a SNP
located in the first intron of the chromosome 5 open reading
frame 30 (C5orf30), with both RA susceptibility and severity,
has prompted the functional characterisation of C5orf30, a
gene with previously unknown functions [98]. C5orf30 was
found to be expressed at high levels in the synovium of pa-
tients with RA compared with control synovial tissue.
C5orf30 decreases the migration of synovial fibroblasts, so

Fig. 2 Major (red) and minor (green) pathways explaining the statistical
association between genetic markers of clinical outcome variables in RA
(acyclic graphs from mediation analysis [81]) (Color figure online)
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that loss of function increases joint inflammation and tissue
damage [98].

The two examples of FOXO3A and C5orf30 illustrate the
potential of genetic studies in the identification of important
pathogenetic mechanisms of RA susceptibility and severity.
Although our current understanding of the genetics of RA
severity is much more limited than our understanding of the
genetics of RA susceptibility, the emerging picture seems to
be that there is only a partial overlap between genetic markers
of susceptibility and severity. Moreover, it is also likely that
genetic markers of severity are different between ACPA+ and
ACPA− RA [83, 116].

Treatment response

Identifying biomarkers to target the right treatments to the
right patients would bring immediate patient benefit in RA
because a number of treatment options exist and some patients
will do well with each option whilst, in others, disease activity
will remain uncontrolled leading to impaired quality of life for
the patient and increasing the risk of long-term disability or
will result in adverse effects in some patients [121, 122]. In
addition, some of the treatment options are expensive thereby

impacting on healthcare resources; for example, biologic
drugs targeting inflammatory pathways cost between £5 and
10K per year per patient. If a stable biomarker could be used to
select the best treatment option for individuals or groups of
patients with RA, it would have the potential to improve
health and costs of healthcare, simultaneously. Hence, RA is
an ideal condition in which to apply such precision medicine
approaches. Genetic biomarkers are stable and are easily
assayed. In other disease areas, genetic biomarkers are being
used to inform treatment selection decisions; for example,
EGFR gene mutation screening in non-small cell lung cancer
is undertaken to determine suitability for oral tyrosine kinase
inhibitors (reviewed in Shea et al. [123]). However, no genetic
variants have yet been robustly and consistently associated
with response to therapies used in RA. Methotrexate is the
most common first-line disease modifying drug choice, but
results from candidate gene association studies have been con-
flicting and few GWAS have been undertaken to date [124,
125]. Similarly, biologic drugs targeting the TNF pathway
(THF inhibitor (TNFi) drugs) are the most common first
choice biologic treatment, but results of genetic association
studies have often been conflicting. For example, an associa-
tion of PDE3A-SLCO1C1 at genome-wide significance levels
with TNFi response has been reported but not replicated [126,

Table 2 Genetic associations
with RA outcome Gene name Reference Comment

HLA-DRB1 [45, 84–87]
TRAF1 [88–92] Not associated in [93]
FOXO3 [94, 95] Not associated in [96]
C5orf30 [97] Mechanism of action of the SNP studied in [98]
IL2RA [99, 100]
IL2RB [100]
SPAG16 [82] GWAS
CD40 [101]
TNFAIP3 [102, 103] Not associated in [93]
TNF-α [104]
IL-4 receptor [105, 106]
IL-4 [107] Not associated in [105]
DKK-1 [108]
MMP-9 [109]
ZFP36L1 / C14orf181 [109]
Granzyme B [110]
CCR5 [111]
FCRL3 [112]
IL15 [113] Not associated in Japanese [114]
PADI4 [84]
LILRA3 [115]
SPP-1 [116] ACPA-negative RA
Osteoprotegerin [117]
HUNK / SCAF4 [83] GWAS in ACPA-negative RA
PTGER4 [118]
CRP [119]

We list here some genetic associations with radiographic outcome in RA reported in the last 5 years (since 2012).
Associations reported previously have been reviewed by Marinou et al. [120] and Viatte & Barton [80]. Gene
names have been assigned to genetic polymorphisms based on the most plausible biological candidate or nearest
gene. Genetic associations with other measures of disease severity are not presented here; non-radiographic
measures of disease outcome are usually more noisy (less stable or reproducible) than radiographic measures,
which make them less suitable for genetic studies, where available cohorts have a modest sample size
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127], whilst association of the PTPRC gene polymorphism
has been associated with TNFi response in some [128–130]
but not all studies [131, 132].

The lack of success in identifying treatment response bio-
markers is disappointing, but not unexpected, given that the
studies face many of the same challenges as for disease sever-
ity studies: First, the outcome measure is a composite of both
objective and subjective measures making reliable, consistent,
and standardised measurement difficult. Furthermore, many
of the subcomponents of the outcome scores are based on
clinical assessments, which may not be truly reflective of re-
sponse in terms of synovial inflammation. For example, the
DAS28 score comprises a clinical assessment of 28 joints for
swelling and tenderness, a serological marker of inflammation
(ESR or CRP), and a score of global well-being provided by
the patient; changes in the DAS28 score before and after treat-
ment are used to assess treatment response. Third, disease
outcome varies over time; fourth, the power of such studies
is limited by sample size. To illustrate the latter, the most
comprehensive study of RA susceptibility loci involved anal-
ysis of samples from over 100,000 individuals whereas the
largest analysis of TNFi response was based on ~2700 patients
[41, 133]. Finally, other factors, such as whether the patients
actually take the drug prescribed (adherence) or whether anti-
bodies to the drug develop have very important influences on
response, but are not yet accounted for in studies [134–136].

Given that genetic variants will act on specific biologic
pathways, it is likely that genetic studies may be better corre-
lated with changes in synovial inflammation, as that is the
target of such treatments; however, synovial inflammation is
poorly correlated with DAS28. Therefore, re-weighting of
current measures or, better, new biological outcome measures
are required that better reflect the synovial inflammatory re-
sponse in order to better classify responders and identify fac-
tors that predict response pre-treatment. For example, giving
higher weightings to the components of the DAS28 score that
correlate better with synovitis (the swollen joint count and
serological inflammatory markers) has been proposed [137],
whilst others have used DCE-MRI scans to accurately quan-
tify synovitis to determine treatment response [138].

Clinical utility and perspectives

Clinical predictionmodels incorporating genetic susceptibility
loci to identify healthy individuals at high risk of disease have
shown a very modest prediction performance and are insuffi-
ciently accurate for general population screening [139]. Also,
genetic markers are not recommended for diagnosis. The clin-
ical utility of a genetic stratification system for precision med-
icine based on HLA haplotypes correlated with disease course
or outcome [45] remains to be evaluated, but its performance
is likely to be equivalent or inferior to ACPA status, thus

insufficient to guide clinical decisions, as the association of
HLAwith severe disease acts mainly through the presence of
ACPA. Currently, the testing of patients for HLA-DRB1 is
therefore only performed as a research tool. However, further
methodological developments and the identification of an in-
creasing number of susceptibility/severity/treatment response
SNPs are ongoing. Together with the identification of other
types of biomarkers (epigenetic, immunological, cellular, se-
rological …), genetic markers might allow in the future the
definition of combined genetic, demographic, laboratory, and
clinical risk scores to accurately classify patients at diagnosis
into different prognostic or treatment response categories for
precision medicine.

Conclusions

GWAS have been extremely successful in the identification of
a large number of genetic susceptibility polymorphisms asso-
ciated with RA. Although the effect sizes of SNPs outside the
HLA are modest, genetics has shed new light on pathogenetic
mechanisms of disease susceptibility and has been hypothesis
generating. Functional genomics approaches are now taking
over from genetic association studies to identify the mecha-
nisms of actions of susceptibility polymorphisms. The identi-
fication of genetic markers of disease outcome and response to
treatment is still at its infancy, but bears the potential to con-
tribute to the development of a precision medicine approach in
the management of RA in the next 10 years.
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