160 research outputs found

    Spectral Energy Distributions and Multiwavelength Selection of Type 1 Quasars

    Get PDF
    We present an analysis of the mid-infrared (MIR) and optical properties of type 1 (broad-line) quasars detected by the Spitzer Space Telescope. The MIR color-redshift relation is characterized to z ~ 3, with predictions to z = 7. We demonstrate how combining MIR and optical colors can yield even more efficient selection of active galactic nuclei (AGNs) than MIR or optical colors alone. Composite spectral energy distributions (SEDs) are constructed for 259 quasars with both Sloan Digital Sky Survey and Spitzer photometry, supplemented by near-IR, GALEX, VLA, and ROSAT data, where available. We discuss how the spectral diversity of quasars influences the determination of bolometric luminosities and accretion rates; assuming the mean SED can lead to errors as large as 50% for individual quasars when inferring a bolometric luminosity from an optical luminosity. Finally, we show that careful consideration of the shape of the mean quasar SED and its redshift dependence leads to a lower estimate of the fraction of reddened/obscured AGNs missed by optical surveys as compared to estimates derived from a single mean MIR to optical flux ratio

    Patients with type 1 diabetes and albuminuria have a reduced brain glycolytic capability that is correlated with brain atrophy

    Get PDF
    IntroductionPatients with type 1 diabetes (T1D) demonstrate brain alterations, including white matter lesions and cerebral atrophy. In this case–control study, we investigated if a reason for this atrophy could be because of diabetes-related complications affecting cerebrovascular or cerebral glycolytic functions. Cerebral physiological dysfunction can lead to energy deficiencies and, consequently, neurodegeneration.MethodsWe examined 33 patients with T1D [18 females, mean age: 50.8 years (range: 26–72)] and 19 matched healthy controls [7 females, mean age: 45.0 years (range: 24–64)]. Eleven (33%) of the patients had albuminuria. Total brain volume, brain parenchymal fraction, gray matter volume and white matter volume were measured by anatomical MRI. Cerebral vascular and glycolytic functions were investigated by measuring global cerebral blood flow (CBF), cerebral metabolic rate of oxygen (CMRO2) and cerebral lactate concentration in response to the inhalation of hypoxic air (12-14% fractional oxygen) using phase-contrast MRI and magnetic resonance spectroscopy (MRS) techniques. The inspiration of hypoxic air challenges both cerebrovascular and cerebral glycolytic physiology, and an impaired response will reveal a physiologic dysfunction.ResultsPatients with T1D and albuminuria had lower total brain volume, brain parenchymal fraction, and gray matter volume than healthy controls and patients without albuminuria. The inhalation of hypoxic air increased CBF and lactate in all groups. Patients with albuminuria had a significantly (p = 0.032) lower lactate response compared to healthy controls. The CBF response was lower in patients with albuminuria compared to healthy controls, however not significantly (p = 0.24) different. CMRO2 was unaffected by the hypoxic challenge in all groups (p > 0.16). A low lactate response was associated with brain atrophy, characterized by reduced total brain volume (p = 0.003) and reduced gray matter volume (p = 0.013).DiscussionWe observed a reduced response of the lactate concentration as an indication of impaired glycolytic activity, which correlated with brain atrophy. Inadequacies in upregulating cerebral glycolytic activity, perhaps from reduced glucose transporters in the brain or hypoxia-inducible factor 1 pathway dysfunction, could be a complication in diabetes contributing to the development of neurodegeneration and declining brain health

    GLP−1 Promotes Cortical and Medullary Perfusion in the Human Kidney and Maintains Renal Oxygenation During NaCl Loading

    Get PDF
    BackgroundGLP‐1 (glucagon‐like peptide‐1) receptor agonists exert beneficial long‐term effects on cardiovascular and renal outcomes. In humans, the natriuretic effect of GLP‐1 depends on GLP‐1 receptor interaction, is accompanied by suppression of angiotensin II, and is independent of changes in renal plasma flow. In rodents, angiotensin II constricts vasa recta and lowers medullary perfusion. The current randomized, controlled, crossover study was designed to test the hypothesis that GLP‐1 increases renal medullary perfusion in healthy humans.Methods and ResultsHealthy male participants (n=10, aged 27±4 years) ingested a fixed sodium intake for 4 days and were examined twice during a 1‐hour infusion of either GLP‐1 (1.5 pmol/kg per minute) or placebo together with infusion of 0.9% NaCl (750 mL/h). Interleaved measurements of renal arterial blood flow, oxygenation (R2*), and perfusion were acquired in the renal cortex and medulla during infusions, using magnetic resonance imaging. GLP‐1 infusion increased medullary perfusion (32±7%, P<0.001) and cortical perfusion (13±4%, P<0.001) compared with placebo. Here, NaCl infusion decreased medullary perfusion (−5±2%, P=0.007), whereas cortical perfusion remained unchanged. R2* values increased by 3±2% (P=0.025) in the medulla and 4±1% (P=0.008) in the cortex during placebo, indicative of decreased oxygenation, but remained unchanged during GLP‐1. Blood flow in the renal artery was not altered significantly by either intervention.ConclusionsGLP‐1 increases predominantly medullary but also cortical perfusion in the healthy human kidney and maintains renal oxygenation during NaCl loading. In perspective, suppression of angiotensin II by GLP‐1 may account for the increase in regional perfusion

    Rapid Implementation of an Integrated Large-Scale HIV Counseling and Testing, Malaria, and Diarrhea Prevention Campaign in Rural Kenya

    Get PDF
    BACKGROUND: Integrated disease prevention in low resource settings can increase coverage, equity and efficiency in controlling high burden infectious diseases. A public-private partnership with the Ministry of Health, CDC, Vestergaard Frandsen and CHF International implemented a one-week integrated multi-disease prevention campaign. METHOD: Residents of Lurambi, Western Kenya were eligible for participation. The aim was to offer services to at least 80% of those aged 15-49. 31 temporary sites in strategically dispersed locations offered: HIV counseling and testing, 60 male condoms, an insecticide-treated bednet, a household water filter for women or an individual filter for men, and for those testing positive, a 3-month supply of cotrimoxazole and referral for follow-up care and treatment. FINDINGS: Over 7 days, 47,311 people attended the campaign with a 96% uptake of the multi-disease preventive package. Of these, 99.7% were tested for HIV (87% in the target 15-49 age group); 80% had previously never tested. 4% of those tested were positive, 61% were women (5% of women and 3% of men), 6% had median CD4 counts of 541 cell/µL (IQR; 356, 754). 386 certified counselors attended to an average 17 participants per day, consistent with recommended national figures for mass campaigns. Among women, HIV infection varied by age, and was more likely with an ended marriage (e.g. widowed vs. never married, OR.3.91; 95% CI. 2.87-5.34), and lack of occupation. In men, quantitatively stronger relationships were found (e.g. widowed vs. never married, OR.7.0; 95% CI. 3.5-13.9). Always using condoms with a non-steady partner was more common among HIV-infected women participants who knew their status compared to those who did not (OR.5.4 95% CI. 2.3-12.8). CONCLUSION: Through integrated campaigns it is feasible to efficiently cover large proportions of eligible adults in rural underserved communities with multiple disease preventive services simultaneously achieving various national and international health development goals

    Whole blood co-expression modules associate with metabolic traits and type 2 diabetes : an IMI-DIRECT study

    Get PDF
    Background The rising prevalence of type 2 diabetes (T2D) poses a major global challenge. It remains unresolved to what extent transcriptomic signatures of metabolic dysregulation and T2D can be observed in easily accessible tissues such as blood. Additionally, large-scale human studies are required to further our understanding of the putative inflammatory component of insulin resistance and T2D. Here we used transcriptomics data from individuals with (n = 789) and without (n = 2127) T2D from the IMI-DIRECT cohorts to describe the co-expression structure of whole blood that mainly reflects processes and cell types of the immune system, and how it relates to metabolically relevant clinical traits and T2D. Methods Clusters of co-expressed genes were identified in the non-diabetic IMI-DIRECT cohort and evaluated with regard to stability, as well as preservation and rewiring in the cohort of individuals with T2D. We performed functional and immune cell signature enrichment analyses, and a genome-wide association study to describe the genetic regulation of the modules. Phenotypic and trans-omics associations of the transcriptomic modules were investigated across both IMI-DIRECT cohorts. Results We identified 55 whole blood co-expression modules, some of which clustered in larger super-modules. We identified a large number of associations between these transcriptomic modules and measures of insulin action and glucose tolerance. Some of the metabolically linked modules reflect neutrophil-lymphocyte ratio in blood while others are independent of white blood cell estimates, including a module of genes encoding neutrophil granule proteins with antibacterial properties for which the strongest associations with clinical traits and T2D status were observed. Through the integration of genetic and multi-omics data, we provide a holistic view of the regulation and molecular context of whole blood transcriptomic modules. We furthermore identified an overlap between genetic signals for T2D and co-expression modules involved in type II interferon signaling. Conclusions Our results offer a large-scale map of whole blood transcriptomic modules in the context of metabolic disease and point to novel biological candidates for future studies related to T2D.Peer reviewe

    Processes Underlying Glycemic Deterioration in Type 2 Diabetes: An IMI DIRECT Study

    Get PDF
    Objective We investigated the processes underlying glycemic deterioration in type 2 diabetes (T2D). Research Design and Methods 732 recently diagnosed T2D patients from the IMI-DIRECT study were extensively phenotyped over three years, including measures of insulin sensitivity (OGIS), β-cell glucose sensitivity (GS) and insulin clearance (CLIm) from mixed meal tests, liver enzymes, lipid profiles, and baseline regional fat from MRI. The associations between the longitudinal metabolic patterns and HbA1c deterioration, adjusted for changes in BMI and in diabetes medications, were assessed via stepwise multivariable linear and logistic regression. Results Faster HbA1c progression was independently associated with faster deterioration of OGIS and GS, and increasing CLIm; visceral or liver fat, HDL-cholesterol and triglycerides had further independent, though weaker, roles (R2=0.38). A subgroup of patients with a markedly higher progression rate (fast progressors) was clearly distinguishable considering these variables only (discrimination capacity from AUROC=0.94). The proportion of fast progressors was reduced from 56% to 8-10% in subgroups in which only one trait among OGIS, GS and CLIm was relatively stable (odds ratios 0.07 to 0.09). T2D polygenic risk score and baseline pancreatic fat, GLP-1, glucagon, diet, and physical activity did not show an independent role. Conclusions Deteriorating insulin sensitivity and β-cell function, increasing insulin clearance, high visceral or liver fat, and worsening of the lipid profile are the crucial factors mediating glycemic deterioration of T2D patients in the initial phase of the disease. Stabilization of a single trait among insulin sensitivity, β-cell function, and insulin clearance may be relevant to prevent progression

    Genetic analysis of blood molecular phenotypes reveals common properties in the regulatory networks affecting complex traits

    Get PDF
    We evaluate the shared genetic regulation of mRNA molecules, proteins and metabolites derived from whole blood from 3029 human donors. We find abundant allelic heterogeneity, where multiple variants regulate a particular molecular phenotype, and pleiotropy, where a single variant associates with multiple molecular phenotypes over multiple genomic regions. The highest proportion of share genetic regulation is detected between gene expression and proteins (66.6%), with a further median shared genetic associations across 49 different tissues of 78.3% and 62.4% between plasma proteins and gene expression. We represent the genetic and molecular associations in networks including 2828 known GWAS variants, showing that GWAS variants are more often connected to gene expression in trans than other molecular phenotypes in the network. Our work provides a roadmap to understanding molecular networks and deriving the underlying mechanism of action of GWAS variants using different molecular phenotypes in an accessible tissue

    Genetic analysis of blood molecular phenotypes reveals common properties in the regulatory networks affecting complex traits

    Get PDF
    We evaluate the shared genetic regulation of mRNA molecules, proteins and metabolites derived from whole blood from 3029 human donors. We find abundant allelic heterogeneity, where multiple variants regulate a particular molecular phenotype, and pleiotropy, where a single variant associates with multiple molecular phenotypes over multiple genomic regions. The highest proportion of share genetic regulation is detected between gene expression and proteins (66.6%), with a further median shared genetic associations across 49 different tissues of 78.3% and 62.4% between plasma proteins and gene expression. We represent the genetic and molecular associations in networks including 2828 known GWAS variants, showing that GWAS variants are more often connected to gene expression in trans than other molecular phenotypes in the network. Our work provides a roadmap to understanding molecular networks and deriving the underlying mechanism of action of GWAS variants using different molecular phenotypes in an accessible tissue
    corecore