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Abstract

Background: The rising prevalence of type 2 diabetes (T2D) poses a major global challenge. It remains unresolved to what
extent transcriptomic signatures of metabolic dysregulation and T2D can be observed in easily accessible tissues such as
blood. Additionally, large-scale human studies are required to further our understanding of the putative inflammatory
component of insulin resistance and T2D. Here we used transcriptomics data from individuals with (n= 789) and without
(n= 2127) T2D from the IMI-DIRECT cohorts to describe the co-expression structure of whole blood that mainly reflects
processes and cell types of the immune system, and how it relates to metabolically relevant clinical traits and T2D.

Methods: Clusters of co-expressed genes were identified in the non-diabetic IMI-DIRECT cohort and evaluated with regard
to stability, as well as preservation and rewiring in the cohort of individuals with T2D. We performed functional and immune
cell signature enrichment analyses, and a genome-wide association study to describe the genetic regulation of the modules.
Phenotypic and trans-omics associations of the transcriptomic modules were investigated across both IMI-DIRECT cohorts.
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Results:We identified 55 whole blood co-expression modules, some of which clustered in larger super-modules. We
identified a large number of associations between these transcriptomic modules and measures of insulin action and
glucose tolerance. Some of the metabolically linked modules reflect neutrophil-lymphocyte ratio in blood while others
are independent of white blood cell estimates, including a module of genes encoding neutrophil granule proteins with
antibacterial properties for which the strongest associations with clinical traits and T2D status were observed. Through the
integration of genetic and multi-omics data, we provide a holistic view of the regulation and molecular context of whole
blood transcriptomic modules. We furthermore identified an overlap between genetic signals for T2D and co-expression
modules involved in type II interferon signaling.

Conclusions: Our results offer a large-scale map of whole blood transcriptomic modules in the context of metabolic
disease and point to novel biological candidates for future studies related to T2D.

Keywords: Type 2 diabetes, Transcriptomics, Co-expression modules, Omics data integration

Background
The rising global prevalence of type 2 diabetes (T2D) is
one of the major medical challenges of the twenty-first
century. Despite intense research efforts, the understand-
ing of the molecular mechanisms of this complex disease
remains incomplete, hampering the development of novel
therapeutic strategies and interventions. For example, it is
largely unknown why some high-risk individuals remain
healthy while others at apparently lower risk progress to
T2D. Insulin resistance generally develops in the context
of obesity and chronic low-grade inflammation [1], and
while metabolism and immunity are intrinsically linked
[2], the exact contribution of inflammation to the patho-
genesis of insulin resistance and T2D is debated. Inflam-
matory markers predict incident T2D, and numerous
molecular and rodent studies support that inflammation
interferes with insulin signaling [3], leading to suggestions
of an inflammatory contribution to the pathogenesis of
T2D [4]. A recent longitudinal multi-omics study de-
scribed associations between inflammatory markers and
insulin resistance, and furthermore demonstrated differ-
ences between insulin-sensitive and insulin-resistant indi-
viduals in the molecular responses to stress events such as
respiratory viral infections [5]. On the other hand, a Men-
delian randomization study did not support a causal effect
of the inflammatory marker C-reactive protein (CRP) in
insulin resistance or T2D [6], although this does not ex-
clude the possibility of a role of other upstream inflamma-
tory effectors. Recent data suggest that some anti-
inflammatory therapies may have a beneficial effect in
diabetes-related traits, but further studies aimed at adding
to our understanding of the inflammatory basis of diabetes
and insulin resistance are called for [7].
Technological advances in the past decade have made

it possible to generate high-throughput omics data in a
large number of human samples, which has led to re-
ports describing signatures of insulin resistance and T2D
in serum proteomic [8, 9] and metabolomic [10–14] data
that in some cases mirror insulin resistance-associated

patterns in the gut microbiota [15]. By contrast, large-
scale transcriptomics studies in the context of pre-
diabetes and T2D are lacking, as transcriptomic studies
for T2D have mainly focused on key T2D tissues such as
pancreatic islets [16–19], skeletal muscle [20] and adi-
pose tissue [21] that are not easily accessible, and those
focusing on blood have been limited to small cohorts
(n < 100) [22–28]. A recent study described whole blood
transcriptomics associations with HbA1c levels in T2D
patients [29], but it is still unknown if similar associa-
tions exist in people at risk but yet free of diabetes.
Thus, the extent to which the transcriptional profiles of
whole blood, mainly involving components of the im-
mune system, reflect or contribute to metabolic pheno-
types that predispose to T2D remains unclear.
The Innovative Medicines Intiative Diabetes Research

on Patient Stratification (IMI-DIRECT) consortium gen-
erated two cohorts of deeply phenotyped non-diabetic
individuals at high risk of T2D (n = 2127) and recently
diagnosed T2D patients (n = 789), respectively [30, 31].
Rich multi-omics data is available in both IMI-DIRECT
cohorts (Fig. 1). We here analyse this high-dimensional
dataset through a data-driven dimensionality reduction
approach in the context of metabolic phenotypes such
as insulin resistance and glucose intolerance in IMI-
DIRECT participants without diabetes (Additional file 1:
Fig. S1), using a similar approach to our previous work
focused on the gut microbiome [15]. By leveraging the
power of clustering co-expressed genes, we identify three
distinct phenotype-anchored super-modules together
with a neutrophil granule protein (NGP) module that
strongly associates with numerous metabolic phenotypes
in non-diabetic individuals. We further explore which
module associations with clinical traits are replicated in
patients with T2D and which modules differ by T2D sta-
tus. We describe the co-expression modules in terms of
trans-omics associations and their genetic regulation and
finally highlight examples of transcriptomic module re-
wiring by disease state.
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Methods
Study cohorts
Data from two epidemiological cohorts that were estab-
lished within the IMI-DIRECT consortium and have pre-
viously been described in detail [30, 31] were used in the
current study. Briefly, the non-diabetic cohort was focused
on pre-diabetes and sampled from 24,682 European-
ancestry adults with available health information. Using a
risk prediction algorithm, individuals at varying risk of gly-
caemic deterioration were identified and enrolled into a
prospective cohort study undertaken at study centres in
Finland (Kuopio), the Netherlands (Amsterdam),
Denmark (Copenhagen) and Sweden (Lund). Of 2235 en-
rolled participants, 2127 passed all inclusion criteria (re-
ferred to as the non-diabetic cohort in the current study)
while 105 individuals developed T2D (HbA1c ≥ 6.5%, fast-
ing glucose ≥ 7.0mmol/l or 2 h glucose > 11.0mmol/l) be-
tween the enrollment and the baseline visit (referred to as
the DAB-T2D group in the current study). Of the 2127 in-
dividuals, 1419 individuals presented impaired glucose
control and are thus at a high risk of developing T2D. The
second cohort was focused on T2D, recruiting 789 indi-
viduals with newly diagnosed T2D at study centres in the

UK (Dundee, Exeter, Newcastle), the Netherlands, Sweden
and Denmark. Of those, 66% received lifestyle treatment
only while 34% were treated with metformin in addition
to lifestyle. In the current study, we further categorized
the 789 newly diagnosed T2D patients into having mild
T2D (no diabetic medication, fasting glucose < 7mmol/L
and fasting HbA1c < 48mmol/mol, n = 194) or more se-
vere T2D (everyone else, n = 595). The clinical traits used
in the current study have been described in detail else-
where [31]. Briefly, beta cell function and glycaemic con-
trol were modeled from frequently sampled 75 g oral
glucose tolerance and mixed meal tolerance tests in the
two cohorts respectively. Biochemical assays were carried
out centrally at the University of Eastern Finland and Uni-
versity of Exeter following standard protocols. Body com-
position was assessed using MRI and lifestyle through
self-report and triaxial accelerometry. Visit date season
was modeled using two trigonometric functions, sine and
cosine, with a period of 1 year [32].

Omics data
The omics data for the IMI-DIRECT cohorts used in the
current study includes measurements of 119 targeted

Fig. 1 IMI-DIRECT cohort data overview. The IMI-DIRECT cohorts consist of 2127 non-diabetic individuals, 105 diagnosed-at-baseline T2D patients
and 789 newly diagnosed T2D patients. All participants were deeply characterized in terms of clinical, biochemical, lifestyle and
molecular phenotypes
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metabolites, 251 untargeted metabolites, 265 proteins
(targeted by 377 antibodies) with a multiplex immuno-
assay and 15 proteins with a Myriad assay. Detailed in-
formation on the generation and quality control of
genetic, transcriptomic, proteomic and metabolomic
data for the IMI-DIRECT cohorts included in the study
is provided in Additional File 2: Supplementary
Methods.

Statistical and bioinformatics analysis
Omics data preprocessing
Linear mixed models were fitted using transcriptomic,
proteomic and metabolomic data as dependent variables
and the covariates age, sex, study centre and technical
variables as independent variables. The technical covari-
ates included run date (transcriptomics, metabolomics),
RNA integrity number, mean GC content and insert size
(transcriptomics) and plate information (proteomics,
metabolomics). The resulting residuals were rank nor-
mal transformed and used for downstream analyses.

White blood cell estimates
White blood cell proportions were estimated using
wbccPredictor (available from https://github.com/mvani-
terson/wbccPredictor). The original method used both
RNAseq data and measured blood cell proportions to
develop a prediction using multivariate partial-least-
squares model (including age and sex). With the predic-
tion model, the estimated cell proportions were com-
puted and compared to the measured cell counts, which
were highly correlated. The prediction model was also
validated in an independent external dataset [29], which
again showed high correlations with four of the five
measured cell counts (neutrophils r = 0.81, lymphocytes
r = 0.83, monocytes r = 0.64, eosinophils r = 0.91 and ba-
sophils r = 0.08).

Definition of co-expression modules
The preprocessed gene expression data was initially
checked for potentially outlying individuals. Specifically,
we declared individuals as outliers if they were > 2.5
standard deviations away from the mean connectivity to
other samples in a signed biweight midcorrelations
sample-sample network. No individuals were classified
as outliers using these criteria. Clusters of co-expressed
genes were identified in the non-diabetic cohort using
the R package WGCNA [33]. Signed, weighted gene co-
expression correlation (biweight midcorrelations, with a
maximum 5% of the individuals regarded as outliers
(maxPOutliers = 0.05)) networks were calculated across
included individuals using all pairwise observations. A
scale-free topology criterion (R2-cutoff for scale-free top-
ology = 0.8) was used to choose the soft threshold
(resulting in β = 15). Clusters of positively correlated

genes were identified with the dynamic hybrid tree-
cutting algorithm, using a deepSplit of 4, a minimum
cluster size of 10 and the partitioning around medoids
option turned on. The expression patterns of each gene
module were summarized by the module eigenvector
(that is, the first principal component of the gene ex-
pression across individuals). Pairs of modules were sub-
sequently merged if the correlation between the
modules’ eigenvectors exceeded 0.85. Genes that did not
fit the clustering criteria were combined in a leftover
group named ‘M0’. Enrichment analysis of tissue-specific
gene expression of genes in modules M1-M55 compared
to genes in the M0 cluster was performed using Tis-
sueEnrich [34], using the full set of 16,209 genes passing
QC in the IMI-DIRECT transcriptomic data as
background.

Module stability
To assess whether the resulting co-expression modules
were robustly defined in the non-diabetic cohort, we
performed a subsampling analysis, where the network
construction and module identification were repeated
100 times (Additional file 1: Fig. S2) using the same pa-
rameters while only including randomly drawn 63% of
the individuals, as implemented in the ‘sampledBlockwi-
seModules’ function in the WGCNA R package [33]. For
each gene, the consistency was calculated as the percent-
age of the 100 subsamplings where the gene was
assigned to the same module as when using all 2127
non-diabetic individuals. Finally, the stability of each
module was defined as the average gene consistency of
all genes constituting the given module.
Among the co-expression modules, we observed a

number of ‘super-modules’, i.e. clusters of internally cor-
related modules. When calculating super-module
consistency, we considered all genes assigned to any of
the modules within a given super-module (defined using
all 2127 non-diabetic individuals). For each of these
genes, we first calculated the super-module consistency
as the percentage of ‘eligible’ subsamplings where the
gene was assigned to one of the modules constituting
the given super-module. Some of the 100 subsamplings
resulted in new modules not observed in the full cohort,
e.g. if a module was split into two. As we do not know
whether such new modules would fall within a given
super-module, we defined eligible subsamplings as either
those where the gene was assigned to (i) one of the 55
modules or unclustered or (ii) one of the 55 modules
(i.e. also excluding subsamplings where the gene was
unclustered). Finally, the super-module stability of each
of the three super-modules was defined as the average
gene super-module consistency of all genes constituting
the given module.
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Immune cell enrichment
Independent enrichment of gene modules for transcrip-
tomic signatures of immune cell types was performed
using the Human Immune Cell Transcriptome dataset
(GSE3982) [35] obtained from the NCBI Gene Expres-
sion Omnibus (GEO). Using the online NCBI GEO2R
tool, we performed differential expression analysis com-
paring each cell type to all other immune cell types
within the data set (basophils, mast cells, eosinophils,
dendritic cells, macrophages, neutrophils, B cells, ef-
fector memory T cells, NK cells, central memory T cells,
Th1 cells, Th2 cells). The log2-fold change-ranked gene
lists formed the comparative signatures of the immune
cell types. We tested the enrichment of module genes
within these ranked gene lists using the ‘gage’ generally
applicable gene-set enrichment Bioconductor package.

Functional annotation of co-expressed modules
We downloaded 4319 biological pathways from Consen-
susPathDB release 32 [36]. Over-representation analysis
of pathways was tested using a hypergeometric test. In
short, all pathways with at least two genes from the
given module were tested. The background was re-
stricted to the subset of all 16,209 genes within the gene
expression data that participate in at least one pathway
(in total 9270 genes), and similarly, only module genes
that were part of the background were included for
testing.

Phenotypic and trans-omics characterization of co-
expressed modules
To remove potentially confounding effects in a prepro-
cessing analysis, a linear model including age, sex and
study centre as independent variables was fitted for all
clinical traits (dependent variable), and the resulting re-
siduals rank normal transformed and used for analysis.
Associations between modules and continuous clinical
traits, metabolites and protein residuals were assessed by
linear regression models, using the module eigenvectors
as independent variables. In secondary analyses, esti-
mated white blood cell counts and visit date season were
included as covariates in the models. Associations with a
Benjamini-Hochberg false discovery rate (FDR) < 0.05
were considered significant, while collectively consider-
ing the full set of modules and phenotypes tested. Asso-
ciations with T2D status were tested with logistic
regression on the rank normal transformed and residua-
lized data and adjusted for multiple hypothesis testing
with a Benjamini-Hochberg FDR.

Module preservation
To further validate the co-expression modules, we
assessed whether modules identified in the non-diabetic
cohort were also preserved in the newly diagnosed T2D

cohort. However, modules identified in non-diabetic in-
dividuals but not preserved in T2D patients are also po-
tentially interesting as they may represent rewired
pathways dysregulated or disrupted in the disease state.
Specifically, we applied the module preservation analysis
from the WGCNA framework where, in short, multiple
different preservation statistics (evaluating both module
density and intramodular connectivity) were calculated
and their significance evaluated using gene-permutations
resulting in Z-scores (200 permutations). These Z-scores
were finally aggregated into a single combined preserva-
tion measure for each co-expression module (Zsummary),
where Zsummary = (Zdensity + Zconnectivity)/2. General
guidelines (originating from simulation studies) state:
Zsummary > 10, strong evidence for preservation; 2 < Zsum-

mary < 10, weak to moderate evidence for preservation;
Zsummary < 2, no evidence for preserved. However, as
Zsummary tends to increase with module size the compos-
ite medianRank statistic (here the multiple different
preservation statistics are aggregated in a single score
using the median of their individual ranks) is also pro-
vided for comparing the relative preservation between
modules of different size, where lower medianRank indi-
cates stronger preservation. For further details, we refer
to [37]. In the preservation analysis, modules with >
1000 genes were reduced by randomly sampling 1000
genes.

Module-QTL analysis
Module-QTL analysis was performed to identify loci as-
sociated with the expression profiles of the 55 modules.
The analyses were performed with SNPTEST version 2.5
[38] based on an additive model and by using the fre-
quentist approach implemented in the tool. The missing
data likelihood score test was used to control for geno-
type uncertainty. For each of the 55 modules, SNPTEST
was used to evaluate the association between module
and genotyped/imputed SNPs with MAF > 0.05 (n
SNPs = 6,066,827) from the combined sample of non-
diabetic and newly diagnosed T2D individuals (n =
2914). A study-wide significance threshold was defined
as P < 0.05/ 6,066,827 SNPs = 8.2 × 10− 09. The first three
principal components of the genotype data were
regressed out from each module to account for popula-
tion stratification and the inverse normal transforma-
tions of the residuals were used in the analysis. Module-
QTLs were selected after Bonferroni correction control-
ling for a family wise error rate at 0.01. LocusZoom ver-
sion 1.4 [39] was used to visualize the module-QTLs by
plotting a region of 1MB flanking the reference SNPs
(SNP with lowest P value). If there were more than one
reference SNPs (same P value) in the same genomic re-
gion, the window was computed around the first and the
last SNP and the central SNP was labeled as reference.

Gudmundsdottir et al. Genome Medicine          (2020) 12:109 Page 5 of 17



The genome-wide recombination rates were estimated
from phased haplotypes in HapMap Release 22 (NCBI
36), and previous GWAS information were retrieved
from the GWAS catalog and filtered to SNPs with a P
value < 5 × 10− 08. Linkage disequilibrium was computed
using the genotype data of the combined sample of non-
diabetic and newly diagnosed T2D individuals in IMI-
DIRECT. The module-QTLs were compared with the re-
sults from the DIAMANTE T2D GWAS [40]. Locus-
Zoom plots were generated by superimposing summary
statistics of the module-QTLs and of the full DIAMAN
TE T2D GWAS meta-analysis (MAF > 0.05) with and
without adjustment for BMI. Colocalization analysis was
performed using the ‘coloc’ R package [41] with default
priors.

Module rewiring
Rewiring of co-expression modules (defined from non-
diabetic individuals) in patients with diabetes was here
assessed using the change in intra-module correlation
structure between the discovery and newly diagnosed
T2D cohorts, which further allows straightforward
visualization. Specifically, we summarized a module’s
correlation structure by the average biweight midcorrela-
tion between any two genes constituting the module (i.e.
ignoring the diagonal/self-interactions). Networks
depicting the correlation structure in the discovery and
newly diagnosed T2D cohorts and the difference be-
tween the two were made using igraph [42]. In addition
to networks based on correlation coefficients calculated
using all individuals in the given cohort (n = 2127 and
n = 789), we also generated networks using an equal sub-
set of individuals (n = 2/3 × 789 = 526) to circumvent any
potential biases originating from cohort size differences.
For the latter, the edge strengths are the average
biweight midcorrelation coefficient from 50
subsamplings.

Results
The study workflow is overviewed in Additional file 1:
Fig. S1. In our discovery analysis, we used data from
2127 non-diabetic northern European IMI-DIRECT par-
ticipants at high risk of developing T2D [31]. In a sec-
ondary analysis, two distinct IMI-DIRECT T2D patient
groups were included; (a) 105 participants who were re-
cruited to the non-diabetic cohort based on a screening
visit but had a diabetic oral glucose tolerance test
(OGTT) result at the baseline visit, hereafter referred to
as the diagnosed-at-baseline (DAB)-T2D cohort and (b)
789 patients recruited directly into the IMI-DIRECT
T2D patient cohort, hereafter referred to as the newly
diagnosed (ND) T2D cohort. The baseline characteristics
of the cohorts are shown in Additional file 3: Table S1
and have been described in detail elsewhere [31].

Definition and characteristics of whole blood co-
expression modules
We used whole blood RNAseq data within which we
identified modules of co-expressed genes. We applied a
weighted gene correlation network analysis (WGCNA)
[33] to define functional transcriptomic co-expression
modules. After adjusting for age, sex, study centre, RNA
integrity number, mean GC content and insert size, we
identified 55 modules of co-expressed genes in the 2127
individuals without diabetes (ranging in size from 11 to
1248 genes), in addition to the 6456 unclustered genes
in module M0 (Additional file 1: Fig. S3, Additional file
3: Table S2). To better understand the overall co-
expression module structure, we performed an enrich-
ment analysis of tissue-specific gene expression using
data from GTEx [43], Human Protein Atlas [44] and
ENCODE [45], which revealed a clear distinction for
clustered versus unclustered genes. The clustered genes
were only enriched for genes with tissue-specific expres-
sion in immune tissues such as spleen, lymph node, ap-
pendix and bone marrow, while the unclustered genes
were enriched for tissue-specific genes from almost all
other tissues and depleted for genes with enhanced ex-
pression in immune tissues (Additional file 1: Fig. S4).
Thus, the transcriptomic modules observed in whole
blood are mainly driven by the immune system, whereas
genes of major importance in other tissues are generally
absent from this structure, even though expressed in
blood. Pathway enrichment analysis of the co-expression
modules revealed functional diversity (Additional file 3:
Table S3), where examples of strongly enriched path-
ways within modules included ‘Type II interferon signal-
ing’ (M29, q = 1.8 × 10− 12), ‘Neutrophil degranulation’
(M8, q = 5.0 × 10− 10; M35, q = 1.3 × 10− 24), ‘Erythrocytes
take up oxygen and release carbon dioxide’ (M30, q =
1.5 × 10− 08), ‘Platelet activation, signaling and aggrega-
tion’ (M18, q = 8.0 × 10− 19), and ‘B-Cell antigen Receptor
(BCR) pathway’ (M17, q = 8.3 × 10− 10). Thus, the whole
blood transcriptomic modules capture functionally re-
lated genes that in some cases represent cell-type-
specific processes.
Among the co-expression modules, we observed a

number of ‘super-modules’ (SMs) (Additional file 1: Fig.
S5), defined as clusters of internally correlated modules,
which as a whole were highly stable (super-module sta-
bility estimate > 79%, Additional file 3: Table S4). As
white blood cell (WBC) counts were not available in our
data, we estimated WBC proportions per individual from
the transcriptomics data as previously described [29] and
investigated whether the relative expression of the genes
forming the co-expression modules was reflective of dif-
ferences in WBC proportions. We observed strong and
consistent correlations between two super-modules and
estimated neutrophil and lymphocyte levels, respectively
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(Fig. 2a), hereafter referred to as the neutrophil-SM and
lymphocyte-SM, which were inversely correlated (Add-
itional file 1: Fig. S5). Separate immune cell signature
enrichment analysis of the modules using the Human
Immune Cell Transcriptome data [35] corroborated
these findings by revealing an enrichment of neutrophil
gene signatures among modules in the neutrophil-SM,
and while we observed more mixed cell-type enrichment
for modules in the lymphocyte-SM modules, these
mainly included lymphocyte gene signatures (Additional
file 3: Table S5). The six modules within the neutrophil-
SM were consistently enriched for pathways involved in
inflammatory mechanisms and response to infections
(Additional file 3: Table S3). Thus, these two super-
modules seem to a large extent to reflect the neutrophil/
lymphocyte ratio in whole blood. Other modules with
clear cell-type-specific signatures included module M3,
which was enriched for T cell gene expression signa-
tures, and modules M16 and M22, which were enriched
for monocyte signatures (Additional file 3: Table S5).
Yet, these two monocyte modules were notably different
in a pathway enrichment analysis that revealed an en-
richment of lysosomal genes in M16 (q = 5.7 × 10− 13)
and pathways such as sphingolipid metabolism (q =
0.034) and vesicle-mediated transport (q = 0.034) for
M22 (Additional file 3: Table S3). While these examples
demonstrate cell-type-specific clustering of transcripts,
we also observed that many modules were enriched for
multiple cell-type signatures, indicating that they are not
solely driven by the abundance of specific cell types
(Additional file 3: Table S5).

Whole blood co-expression module associations with
clinical traits in individuals without diabetes
To investigate the overall relationship between whole
blood transcriptomic profiles and metabolic clinical
traits in 2127 individuals without diabetes, we character-
ized the 55 co-expression modules in terms of their as-
sociations with clinical phenotypes. We observed
numerous associations between transcriptomic modules
and measurements related to inflammation, fat tissue,
glucose tolerance, insulin sensitivity, lipids and physical
activity (Fig. 2b, Additional file 1: Fig. S6, Additional file
3: Tables S6-S7), thus revealing a major overlap between
metabolic and immune processes. Not surprisingly, most
modules (42/55 = 76%) were significantly associated with
CRP levels, indicating that most whole blood transcrip-
tomic modules are affected by inflammatory status. By
contrast, fewer signals were detected overall for mea-
sures of beta cell function, incretin levels or diet (Add-
itional file 1: Fig. S6, Additional file 3: Tables S6-S7),
suggesting that these traits are not strongly reflected in
whole blood transcriptomic modules, given the clinical
and diet measurements used in this study.

Three super-modules showed distinct clinical trait as-
sociation profiles. The neutrophil-SM was characterized
by consistent negative associations with insulin sensitiv-
ity and positive associations with CRP levels, abdominal
and pancreatic fat and fasting GLP-1 levels (Fig. 2c). The
lymphocyte-SM generally showed clinical associations
that contrasted those that characterized the neutrophil-
SM (Fig. 2b, c, Additional file 3: Tables S6-S7). Finally, a
third super-module with a mixed cell-type association
profile (Fig. 2a), hereafter referred to as the mixed-SM,
exhibited a strong negative association with fasting
HbA1c and positive association with physical activity
and examination date, indicating seasonal variation of
the seven composite modules (Fig. 2b, c, Additional file
1: Fig. S6). These seven modules were enriched for di-
verse functions, such as chromatin organization, gene
expression and signaling pathways, including EGF-
EGFR, PI3K/AKT and TGF (Additional file 3: Table S3).
Apart from the three highlighted super-modules, one

independent module (M35) stood out due to its strong
associations with multiple clinical traits compared to all
other modules (Fig. 2b and Fig. 3a, b, Additional file 1:
Fig. S6, Additional file 3: Tables S6-S7). These included
positive associations with basal insulin secretion rate
(FDR = 3.76 × 10− 26), total GLP-1 (FDR = 2.19 × 10− 09),
2-h glucose (FDR = 2.56 × 10− 04), intra-abdominal adi-
pose tissue (FDR = 9.28 × 10− 08) and liver fat (FDR =
3.14 × 10− 06), and negative associations with insulin sen-
sitivity (Matsuda, FDR = 3.93 × 10− 19; 2 h OGIS, FDR =
1.4 × 10− 13) and fiber intake (FDR = 4.17 × 10− 04). We
performed additional multivariate analyses for module
M35 and selected clinical traits and found the associa-
tions between M35 and insulin sensitivity (Matsuda),
BMI and GLP-1 to be largely attenuated after adjust-
ment for basal insulin secretion rate, whereas the associ-
ations of M35 with basal insulin secretion rate, fasting
triglycerides and CRP remained strongly significant in all
models tested (Table 1, Additional file 3: Table S8).
Module M35 was extremely stable within the non-
diabetic cohort (stability estimate = 98%, indicating that
on average each gene was retained within the module in
98% of random subsamples, Additional file 3: Table S4
and “Methods”) and did not correlate strongly with any
other module (maximum Pearson’s r = 0.23 for M33,
Additional file 1: Fig. S5). M35 contained 31 genes, most
of which encode neutrophil granule proteins (NGPs)
with antibacterial properties that play a role in the in-
nate immune system, and overlapped extensively with a
previously described neutrophil co-expression module in
blood [46] (Additional file 3: Table S3 & S9). In BLUE-
PRINT gene expression data from various blood cells
[47], we found the M35 genes to be highest expressed in
neutrophil precursors (Fig. 3c), but intriguingly, further
immune cell signature enrichment analysis using the
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Fig. 2 (See legend on next page.)
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Human Immune Cell Transcriptome data [35] revealed
that many M35 genes (CEACAM8, LTF, ELANE, MPO,
BPI and CTSG) are in fact more highly expressed in
mast cells compared to neutrophils (Additional file 3:
Tables S5 & S10). As expected, the individual genes in
M35 showed consistent directions of effects for their
clinical associations, with the strongest associations ob-
served for CRISP3, CAMP, LTF, MMP8, LCN2 and
CEACAM8 (Fig. 3a). Here, the latter four were the most
central genes within the M35 module together with
CEACAM6 and DEFA4, as indicated by the intramodular
connectivity parameter (kIM, Additional file 3: Table
S9), and can as such be considered as hubs within the
module. After additional adjustment for WBC propor-
tions and examination date, many associations remained
highly significant, such as for the NGP module M35 and
the mixed-SM (Additional file 1: Fig. S7).
In summary, we identified extensive associations be-

tween whole blood transcriptomic profiles and metabolic
traits in non-diabetic individuals, the strongest of which
were observed between the NGP module M35 and mea-
sures of abdominal obesity and insulin resistance. In
addition, we identified three major transcriptomic super-
modules, two of which exhibit inflammatory and WBC-
proportion-mediated associations with central obesity
and leanness, respectively, while the third was strongly
associated with lower fasting HbA1c levels, independ-
ently of both WBC proportions and seasonal variation in
whole blood gene expression.

Co-expression module associations in T2D patients
To validate the importance of the identified transcripto-
mics signatures of insulin resistance and glucose intoler-
ance in individuals without diabetes, we investigated the
associations between the transcriptomic modules and
clinical traits in the newly diagnosed T2D cohort (n =
789). We found all 55 transcriptomics modules to be sig-
nificantly preserved (see “Methods”) between the non-
diabetic and the newly diagnosed T2D cohort (Add-
itional file 1: Fig. S8), thus validating them as biologically
relevant entities that can be compared between groups.
Overall, we observed fewer associations between the
modules and clinical traits in the 789 T2D patients com-
pared to the 2127 non-diabetic individuals (Additional

file 1: Fig. S9), possibly because of the smaller cohort
size and differences in phenotype variance, and therefore
reduced power to detect the associations. However, the
associations between the NGP module M35, which was
highly preserved in the newly diagnosed T2D cohort
(medianRank = 5, Additional file 3: Table S4 and
“Methods”), and adiposity, insulin sensitivity, fasting glu-
cose and triglycerides were replicated in the newly diag-
nosed T2D cohort. Similarly, for the neutrophil- and
lymphocyte-SMs, numerous associations with insulin
sensitivity, glucose tolerance and adiposity were vali-
dated in the newly diagnosed T2D cohort. Conversely,
while directionally consistent, the association between
the mixed-SM and HbA1c levels in T2D patients was
not significant (Additional file 1: Fig. S9). We further in-
vestigated if the lack of statistical significance was due to
confounding of medication use in the newly diagnosed
T2D cohort but obtained similar results after adjusting
or stratifying by metformin use, observing only a slight
increase in statistical significance in T2D patients on
metformin (Additional file 3: Table S11).
We next compared the relative expression of the co-

expression modules in the non-diabetic individuals to
both the newly diagnosed T2D and DAB-T2D patient
groups, as well as to only the more severely diabetic
newly diagnosed T2D patients (see “Methods”). We
found five modules to differ (Student’s t test, FDR <
0.05) between non-diabetic and T2D individuals in one
or more of the three comparisons; four members (M9,
M36, M47, M55) of the neutrophil-SM and the NGP
module M35, which differed most between non-diabetic
individuals and T2D patients of all 55 modules
(FDRDAB-T2D = 0.016, FDRND-T2D_severe = 4.0 × 10− 03)
(Additional file 3: Table S12, Fig. 2d). The directions of
effect for module associations with T2D were consistent
with the clinical trait associations previously observed
within the non-diabetic cohort, as they were all higher
expressed in T2D patients than non-diabetic individuals
(Additional file 3: Table S12).

Trans-omics associations
To shed light on potential molecular mechanisms in-
volved in the transcriptomic module associations with
clinical traits in non-diabetic individuals, we utilized the

(See figure on previous page.)
Fig. 2 Whole blood transcriptomic co-expression modules show extensive correlations with clinical traits in 2127 non-diabetic individuals. a
Heatmap showing Pearson’s correlation between modules (rows) and white blood cell estimates. Stars indicate statistical significance as such:
***FDR < 0.001, **FDR < 0.01, *FDR < 0.05. b Heatmap providing overview of the associations between modules and selected clinical traits. The
heatmap colors denote the linear regression estimates, where all phenotypes have previously been rank normal transformed and residualized for
age, sex, centre and technical covariates. c Boxplots demonstrating the distinct clinical trait associations for the three transcriptomic super-
modules, as the average estimate for associations across all modules within a given super-module. P values are shown for Kruskal-Wallis rank sum
test between the three super-modules. d T2D associations for each module where the colour indicates a positive (blue) or negative association
(red). SM, super-module; IAAT, intra-abdominal adipose tissue
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Fig. 3 NGP module M35 clinical and cross-omics associations and expression profile across immune cell types. a Heatmap demonstrating the
associations between individual genes in module M35 and selected clinical traits. The heatmap colors denote the linear regression estimates,
where all phenotypes have previously been rank normal transformed. Stars indicate statistical significance as such: ***FDR < 0.001, **FDR < 0.01,
*FDR < 0.05. b Individuals within the top (red, n = 709) and bottom (blue, n = 709) tertiles of M35 expression have significantly different insulin
secretion rate, triglycerides, insulin sensitivity and waist circumference. P values are shown for a two-sided t-test comparing rank normal
transformed variables between the two groups. c Average expression of M35 genes across haematopoietic cell types from the BLUEPRINT
consortium. d Cross-omics associations for module M35, including features from untargeted metabolomics (dark blue), targeted metabolomics
(green), antibody-based proteomics (light blue) and the Myriad protein panel (red). The edge colour indicates a positive (blue) or negative (red)
direction of effect for the given association. IAAT, intra-abdominal adipose tissue
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rich multi-omics data in IMI-DIRECT to further de-
scribe the transcriptomic modules in terms of their asso-
ciations with metabolomic and proteomic
measurements. For this analysis, we included measure-
ments of 119 targeted metabolites, 251 untargeted me-
tabolites, 265 proteins (targeted by 377 antibodies) with
a multiplex immunoassay and 15 proteins with a Myriad
assay. We observed 7521 significant (FDR < 0.05) trans-
omics associations for the transcriptomic modules in the
non-diabetic cohort, and as expected due to differences
in sample size, fewer in the ND-T2D cohort, or 1414 as-
sociations (Additional file 1: Fig. S10a). Of the 7521
trans-omics associations detected in the non-diabetic co-
hort, 2459 (33%) were replicated in the newly diagnosed
T2D cohort (P < 0.05) where 2412 (98%) were direction-
ally consistent between the two (Additional file 1: Fig.
S10b-c, Additional file 3: Table S13).
We noted that the NPG module M35, of particular

interest due to its strong clinical associations, was the
module with the highest number of unique omics associ-
ations, i.e. it was associated with 25 omics measurements
that were not associated with any other module. These
included a negative association with the gut microbiota-
produced metabolite indolepropionate and positive asso-
ciations with the BCAAs valine and leucine (Fig. 3d,
Additional file 3: Table S13). Module M35 was further-
more associated with BCAA breakdown products, such
as 3-methyl-2-oxobutyrate, and numerous phosphatidyl-
cholines (Fig. 3d, Additional file 3: Table S13).

Genetic regulation of whole blood transcriptomic
modules
To better understand the regulatory mechanisms under-
lying the structure of the co-expression modules in
whole blood, we performed a genome-wide association
analysis for each module to identify genetic variants as-
sociated with module expression, or module quantitative
trait loci (module-QTL). We performed the module-
QTL analysis in both the non-diabetic cohort alone (n =
2127) and in the combined sample of participants with

and without T2D (n = 2914). Results from the two differ-
ent module-QTL analyses were highly concordant (Add-
itional file 1: Fig. S11), and we therefore continued with
the combined sample for increased statistical power. For
nine modules, we identified one or more study-wide sig-
nificant (P < 8.2 × 10− 09) module-QTLs (Additional file
3: Table S14), where one locus on chromosome 12 was
associated with two modules (M29 and M32) consistent
with these modules being correlated (Pearson’s r = 0.78).
The modules with a module-QTL tended to be small
(range 13–155 genes, mean = 44 genes) and highly stable
(mean stability estimate = 87%, SD = 16%, Additional file
3: Table S4 and “Methods”). As the majority of the co-
expression modules were associated with glycemic traits
such as insulin resistance, glucose intolerance and T2D
in our observational analysis, we performed a lookup of
the 17 module-QTL lead variants in summary statistics
from the DIAMANTE T2D genome-wide association
study (GWAS) in 898,130 European-descent individuals
[40]. At a Bonferroni-corrected P value threshold (P <
0.05/17 module-QTLs = 0.0029), we found the genetic
signal for modules M32 and M29 on chromosome 12 to be
associated with T2D and T2D adjusted for BMI (Additional
file 3: Table S14). A colocalization analysis supported a
shared causal variant underlying these traits (posterior
probability = 99.1%, Fig. 4). The lead variant for modules
M32 and M29 in this locus are in strong LD (r2 > 0.94) with
the nonsynonymous SH2B3 variant rs3184504, which is
highly pleiotropic and has been associated with numerous
immune, haematologic and metabolic traits [48–50]. A
lookup of the M32 lead variant rs10774625 in publicly
available GWAS summary statistics revealed similar links,
including genome-wide significant associations with choles-
terol, coronary artery disease, HbA1c, serum urate and
hypothyroidism (Additional file 1: Fig. S12). Both modules
M32 and M29, regulated by this locus in our study, were
strongly enriched for type II interferon signaling, NOD-like
receptor signaling and other immune pathways (Additional
file 3: Table S3). Of note, the three module-QTLs identified
for module M35 were not significantly associated with

Table 1 Associations between module M35 and six selected clinical traits in multivariate regression models where adjusting for the
other five variables

Basic model (DV ~M35 + age + sex + study centre + RNAseq technical
variables)

Basic model + other 5
variables

Dependent variable (DV) Beta s.e. P Beta s.e. P

Basal insulin secretion rate 10.75 0.95 6.83 × 10−29 1.92 0.50 1.23 × 10−04

Matsuda insulin sensitivity index −9.20 0.96 1.67 × 10−21 0.55 0.51 0.28

Triglycerides 10.06 0.96 4.67 × 10−25 5.01 0.89 2.17 × 10−08

Body mass index 7.24 0.98 1.60 × 10−13 0.40 0.85 0.63

hsCRP 7.68 0.96 2.42 × 10−15 5.06 0.96 1.53 × 10−07

Total GLP-1 6.40 0.96 2.99 × 10−11 1.94 0.91 0.03

DV dependent variable, GLP-1 glucagon-like protein 1, hsCRP high-sensitivity C-reactive protein, s.e. standard error
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T2D, thus suggesting a non-causal relationship between
this module and T2D.

Module rewiring in T2D
The transition between healthy and complex disease
states may follow, or lead to, the rewiring of molecu-
lar networks, driving phenotypic changes [51]. Weak
network or module preservation between disease cases
and controls may indicate context-specific regulation,
and we hypothesized that an altered co-ordination or
rewiring of a functional module might take place in a
disease state such as T2D. While we found all co-

expression modules to be preserved to some extent
between the non-diabetic and T2D individuals
(Additional file 1: Fig. S8), they could still be ranked
in terms of preservation. We calculated module rewir-
ing between the non-diabetic and newly diagnosed
T2D cohort, defined as the change in absolute mean
correlation between genes within a given module
(“Methods”). Here, the most noteworthy module was
module M30, which was almost perfectly stable within
the non-diabetic cohort (stability estimate = 97%)
while being one of the modules least preserved be-
tween cohorts (medianRank = 52) and having lower

Fig. 4 LocusZoom plots for module M23 and T2D associations on chromosome 12. Associations for module M32 in IMI-DIRECT (blue) are shown
together with T2D associations (red) in the same region from the DIAMANTE GWAS. The lines denote a genome-wide significance threshold of
P = 5 × 10− 08 (red line) and the IMI-DIRECT study-wide significant threshold of P = 8.2 × 10− 09 (blue line)
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connectivity within the newly diagnosed T2D patients
(Additional file 3: Table S4), suggesting its rewiring is
very specific to the diabetic state. This module was
strongly enriched for erythrocyte pathways such as
‘Erythrocytes take up oxygen and release carbon diox-
ide’ (FDR = 1.5 × 10− 08) and was positively associated
with adiposity, insulin resistance and fasting triglycer-
ides in non-diabetic individuals (Fig. 2a). The module
showing the largest extent of rewiring from non-
diabetic to T2D individuals was M26 (Additional file
1: Fig. S13, Additional file 3: Table S4), which was
also the least preserved module (medianRank = 54,
Additional file 3: Table S4 and “Methods”). This
module, which was enriched for Rho GTPase and
TGF signaling (Additional file 3: Table S3), had con-
siderably fewer intra-module correlations in the newly
diagnosed T2D patients compared to the non-diabetic
individuals (Additional file 3: Table S4). Module M26
was a member of the mixed-SM, showing a negative
association with fasting HbA1c levels and a positive
association with fasting HDL levels and physical activ-
ity in the non-diabetic cohort (Fig. 2).

Discussion
The current study is the largest study to date to describe
transcriptomic signatures of metabolic clinical traits in
non-diabetic individuals and T2D patients and demon-
strates that whole blood transcriptomic modules, which
mainly describe co-expression within immune cells,
strongly reflect metabolic health. We identify transcrip-
tomic signatures of insulin resistance and glucose in-
tolerance in non-diabetic individuals, many of which we
replicate in T2D patients. These signatures are partly
driven by neutrophil/lymphocyte ratios while others are
independent of WBC proportions, including those of the
NGP module M35. Furthermore, five transcriptional
modules associated with quantitative metabolic traits in
non-diabetic individuals were differentially expressed in
T2D patients compared to those without diabetes. From
a clinical perspective, our findings highlight the potential
for further investigation of certain immune cell subpop-
ulations in relation to metabolic health, which could
provide more economically feasible biomarker options
for clinical practice than whole blood transcriptomics.
Previous studies have demonstrated extensive network

structure between genetics, transcripts and metabolites
in whole blood that have been described as an interface
between inflammation and metabolism [46, 52]. Here we
apply similar approaches to investigate the relevance of
such network structures to human clinical traits related
to metabolism and T2D. Co-expression analysis differs
from the analysis of physical interactions in the sense
that transcriptional correlation can be caused by numer-
ous different mechanisms, including shared regulation at

the transcriptional or post-transcriptional level, but also
factors such as proportion of cell types in a given tissue.
A drawback of module analysis is that some fine-grained
information is lost, and genes that are not part of any
module are excluded from the analysis, yet this approach
also reduces noise in large-scale data and facilitates the
discovery of shared patterns across functionally related
genes.
The strongest signals observed in our study were for

the NPG module M35, which was associated with a wide
range of clinical traits in non-diabetic individuals, even
independently of estimated WBC proportions. A module
overlapping with module M35 has been previously de-
scribed and linked to serum metabolomics profiles [46],
and we here extend these findings by demonstrating the
strong clinical relevance of this module. We furthermore
find that module M35 is the only transcriptomic module
in blood that correlates with serum levels of BCAAs in
our data and the gut microbiota-produced metabolite
indolepropionate. BCAAs are established metabolite
markers for risk of T2D [14], and we have previously
shown in another cohort that the BCAAs co-occur with
metabolites related to gut microbial metabolism [15].
These associations raise the question if the module M35
might be related to gut microbial composition. Module
M35 mainly consists of genes encoding granule proteins
with antibacterial properties, and while many of these
have established roles in neutrophils, our results suggest
they may be important in mast cells as well. The tran-
scriptional regulation of NGPs takes place during the
cell differentiation process in the bone marrow [53],
consistent with our observation that these genes are
highest expressed in neutrophil precursors. This might
indicate that the transcriptional levels of these genes ob-
served in peripheral blood represent a certain cell sub-
population, possibly immature neutrophils, rather than a
transcriptional response. The presence of immature neu-
trophils in blood (generally termed ‘left shift’) occurs for
example as a response to inflammation due to bacterial
infections [54]. Infection burden and metabolic endotox-
emia are linked to insulin resistance [55, 56], and further
studies will be required to elucidate if the NGP module
plays a role in the immune response to such conditions.
To our knowledge, this gene module is novel in the con-
text of insulin resistance and T2D and while our data do
not support an independent causal role of it in T2D aeti-
ology, it is an interesting candidate for further mechanis-
tic studies.
Overall, we find that the co-expression structure of

whole blood transcriptomic data to a large extent re-
flects WBC proportions. This observation is in line with
previous reports on much of the variance of blood tran-
scriptomics being explained by inter-individual differ-
ences in the proportions of WBC subtypes [57]. A
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limitation of our study is the lack of measured blood cell
counts, thus restricting us to the use of estimated white
blood cell proportions from the transcriptomics data.
However, in a previous study, the same types of esti-
mates were highly correlated with measured cell propor-
tions in external data independent of the training data
[29]. Furthermore, in the current study, additional path-
way and immune cell-type enrichment analyses corrobo-
rated the conclusions derived from using these
estimates. The impact of WBC proportions on whole
blood transcriptomics data in our study is mainly
reflected in the two super-modules that to a large extent
seem to represent neutrophil and lymphocyte propor-
tions and associate with central obesity and leanness, re-
spectively. Neutrophil/lymphocyte ratio is a general
marker of low-grade inflammation and has been sug-
gested as a biomarker for cardiac mortality [58] and can-
cer prognosis [59]. The extensive associations between
these super-modules and clinical traits in our results
suggest that the utility of the neutrophil/lymphocyte ra-
tio should be studied further in the context of T2D, es-
pecially as total WBC counts are predictive of incident
T2D [60, 61]. The seasonal variation of the third super-
module, the mixed-SM, suggests its composite genes
may be involved in the regulation or response to bio-
logical rhythms or environmental exposures. Yet, this
super-module remained associated with HbA1c levels
after adjustment for both visit date and estimated WBC
proportions, suggesting these genes may also be directly
related to glucose homeostasis. However, these associa-
tions were not replicated in the newly diagnosed T2D
cohort, a finding that was not explained by confounding
from anti-diabetic medication use and indicates that the
observed associations between the mixed-SM and
HbA1c may not be directly transferable to T2D patients.
Integrating genetic data, we found the highly pleio-

tropic SH2B3 locus, which overlaps with a nominal T2D
signal from the DIAMANTE GWAS, to regulate the
type II interferon signaling modules M32 and M29, sug-
gesting a mechanism through which it might mediate its
effect on diverse traits and diseases. Here, formal Men-
delian randomization analysis was not deemed appropri-
ate due to the known pleiotropy at this locus. Our
results are in line with the previously described func-
tional effects of the SH2B3 rs3184504 variant on proin-
flammatory cytokine production [62]. The SH2B3
rs3184504 variant has also been associated with the ex-
pression of multiple genes [63], and SH2B3 in cis and 14
other genes in trans, including GBP2 and UBE2L6 from
module M32 and GBP4 and STAT1 from module M29.
Thus, this locus seems to be a transcriptional master
regulator of immune pathways, while at the same time
exhibiting pleiotropic effects on a number of traits and
diseases, including T2D. Many of the module-QTL loci

overlap with GWAS hits for immune-related pheno-
types, suggesting that the modules described here might
be of importance in the context of inflammatory dis-
eases. Similar analyses should be performed for co-
expression modules in other more T2D-relevant tissues
to provide further insight into the causal networks
underlying T2D aetiology. Similarly, network rewiring in
T2D might be more strongly detectable in other tissues
than blood, although we did observe changes in module
connectivity with diabetes status for Rho signaling and
erythrocyte pathway modules.
To conclude, we have performed a large-scale analysis

of whole blood transcriptomics in the context of meta-
bolic traits and T2D. By exploring associations with clin-
ical traits, trans-omics associations, genetic enrichment
and module rewiring by disease state, we provide a com-
prehensive view of the relationship between whole blood
co-expression modules and metabolic health in non-
diabetic individuals and T2D patients and highlight
novel candidates for further studies.
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