11 research outputs found

    Improved cultivation and metagenomics as new tools for bioprospecting in cold environments

    Get PDF
    Only a small minority of microorganisms from an environmental sample can be cultured in the laboratory leaving the enormous bioprospecting potential of the uncultured diversity unexplored. This resource can be accessed by improved cultivation methods in which the natural environment is brought into the laboratory or through metagenomic approaches where culture-independent DNA sequence information can be combined with functional screening. The coupling of these two approaches circumvents the need for pure, cultured isolates and can be used to generate targeted information on communities enriched for specific activities or properties. Bioprospecting in extreme environments is often associated with additional challenges such as low biomass, slow cell growth, complex sample matrices, restricted access, and problematic in situ analyses. In addition, the choice of vector system and expression host may be limited as few hosts are available for expression of genes with extremophilic properties. This review summarizes the methods developed for improved cultivation as well as the metagenomic approaches for bioprospecting with focus on the challenges faced by bioprospecting in cold environments

    Genomic and exoproteomic analyses of cold- and alkaline-adapted bacteria reveal an abundance of secreted subtilisin-like proteases

    Get PDF
    Proteases active at low temperature or high pH are used in many commercial applications, including the detergent, food and feed industries, and bacteria specifically adapted to these conditions are a potential source of novel proteases. Environments combining these two extremes are very rare, but offer the promise of proteases ideally suited to work at both high pH and low temperature. In this report, bacteria from two cold and alkaline environments, the ikaite columns in Greenland and alkaline ponds in the McMurdo Dry Valley region, Antarctica, were screened for extracellular protease activity. Two isolates, Arsukibacterium ikkense from Greenland and a related strain, Arsukibacterium sp. MJ3, from Antarctica, were further characterized with respect to protease production. Genome sequencing identified a range of potential extracellular proteases including a number of putative secreted subtilisins. An extensive liquid chromatography–tandem mass spectrometry analysis of proteins secreted by A. ikkense identified six subtilisin‐like proteases as abundant components of the exoproteome in addition to other peptidases potentially involved in complete degradation of extracellular protein. Screening of Arsukibacterium genome libraries in Escherichia coli identified two orthologous secreted subtilisins active at pH 10 and 20°C, which were also present in the A. ikkense exoproteome. Recombinant production of both proteases confirmed the observed activity

    Inter-laboratory testing of the effect of DNA blocking reagent G2 on DNA extraction from low-biomass clay samples

    Get PDF
    Here we show that a commercial blocking reagent (G2) based on modifed eukaryotic DNA signifcantly improved DNA extraction efciency. We subjected G2 to an inter-laboratory testing, where DNA was extracted from the same clay subsoil using the same batch of kits. The inter-laboratory extraction campaign revealed large variation among the participating laboratories, but the reagent increased the number of PCR-amplifed16S rRNA genes recovered from biomass naturally present in the soils by one log unit. An extensive sequencing approach demonstrated that the blocking reagent was free of contaminating DNA, and may therefore also be used in metagenomics studies that require direct sequencing

    Spis sundt med biotek og forebyg kræft

    No full text

    Inter-laboratory testing of the effect of DNA blocking reagent G2 on DNA extraction from low-biomass clay samples

    No full text
    Here we show that a commercial blocking reagent (G2) based on modified eukaryotic DNA significantly improved DNA extraction efficiency. We subjected G2 to an inter-laboratory testing, where DNA was extracted from the same clay subsoil using the same batch of kits. The inter-laboratory extraction campaign revealed large variation among the participating laboratories, but the reagent increased the number of PCR-amplified16S rRNA genes recovered from biomass naturally present in the soils by one log unit. An extensive sequencing approach demonstrated that the blocking reagent was free of contaminating DNA, and may therefore also be used in metagenomics studies that require direct sequencing
    corecore