129 research outputs found

    Language as Encoding Thought vs. Language as Medium of Thought: On the Question of J. G. Fichte’s Influence on Wilhelm von Humboldt

    Get PDF
    In this paper I take up the question of the possible influence of J. G. Fichte on Wilhelm von Humboldt’s theory of language. I first argue that the historical record is unclear, but show that there is a deep philosophical difference between the two views and, as a result of this difference, we should conclude that the influence was small. Drawing on a distinction made by Michael Dummett, I show that Fichte understands language as encoding thought while Humboldt understands language as a medium of thought. The consequences of this difference affect a wide range of issues from their views on the nature of personal pronouns, to their theories of communicative understanding, to their theories of the proper nature of inquiry into language

    The role of pannexin hemichannels in the anoxic depolarization of hippocampal pyramidal cells

    Get PDF
    Neuronal gap junctional hemichannels, composed of pannexin-1 subunits, have been suggested to play a crucial role in epilepsy and brain ischaemia. After a few minutes of anoxia or ischaemia, neurons in brain slices show a rapid depolarization to ∼−20 mV, called the anoxic depolarization. Glutamate receptor blockers can prevent the anoxic depolarization, suggesting that it is produced by a cation influx through glutamate-gated channels. However, in isolated hippocampal pyramidal cells, simulated ischaemia evokes a large inward current and an increase in permeability to large molecules, mediated by the opening of pannexin-1 hemichannels. N-methyl-d-aspartate is also reported to open these hemichannels, suggesting that the activation of N-methyl-d-aspartate receptors, which occurs when glutamate is released in ischaemia, might cause the anoxic depolarization by evoking a secondary ion flux through pannexin-1 hemichannels. We tested the contribution of pannexin hemichannels to the anoxic depolarization in CA1 pyramidal cells in the more physiological environment of hippocampal slices. Three independent inhibitors of hemichannels—carbenoxolone, lanthanum and mefloquine—had no significant effect on the current generating the anoxic depolarization, while a cocktail of glutamate and gamma-aminobutyric acid class A receptor blockers abolished it. We conclude that pannexin hemichannels do not generate the large inward current that underlies the anoxic depolarization. Glutamate receptor channels remain the main candidate for generating the large inward current that produces the anoxic depolarization

    Lung eQTLs to Help Reveal the Molecular Underpinnings of Asthma

    Get PDF
    Genome-wide association studies (GWAS) have identified loci reproducibly associated with pulmonary diseases; however, the molecular mechanism underlying these associations are largely unknown. The objectives of this study were to discover genetic variants affecting gene expression in human lung tissue, to refine susceptibility loci for asthma identified in GWAS studies, and to use the genetics of gene expression and network analyses to find key molecular drivers of asthma. We performed a genome-wide search for expression quantitative trait loci (eQTL) in 1,111 human lung samples. The lung eQTL dataset was then used to inform asthma genetic studies reported in the literature. The top ranked lung eQTLs were integrated with the GWAS on asthma reported by the GABRIEL consortium to generate a Bayesian gene expression network for discovery of novel molecular pathways underpinning asthma. We detected 17,178 cis- and 593 trans- lung eQTLs, which can be used to explore the functional consequences of loci associated with lung diseases and traits. Some strong eQTLs are also asthma susceptibility loci. For example, rs3859192 on chr17q21 is robustly associated with the mRNA levels of GSDMA (P = 3.55 × 10(-151)). The genetic-gene expression network identified the SOCS3 pathway as one of the key drivers of asthma. The eQTLs and gene networks identified in this study are powerful tools for elucidating the causal mechanisms underlying pulmonary disease. This data resource offers much-needed support to pinpoint the causal genes and characterize the molecular function of gene variants associated with lung diseases

    Pumilio directs deadenylation-associated translational repression of the cyclin-dependent kinase 1 activator RGC-32

    Get PDF
    Response gene to complement-32 (RGC-32) activates cyclin-dependent kinase 1, regulates the cell cycle and is deregulated in many human tumours. We previously showed that RGC-32 expression is upregulated by the cancer-associated Epstein-Barr virus (EBV) in latently infected B cells through the relief of translational repression. We now show that EBV infection of naïve primary B cells also induces RGC-32 protein translation. In EBV-immortalised cell lines, we found that RGC-32 depletion resulted in cell death, indicating a key role in B cell survival. Studying RGC-32 translational control in EBV-infected cells, we found that the RGC-32 3′untranslated region (3′UTR) mediates translational repression. Repression was dependent on a single Pumilio binding element (PBE) adjacent to the polyadenylation signal. Mutation of this PBE did not affect mRNA cleavage, but resulted in increased polyA tail length. Consistent with Pumilio-dependent recruitment of deadenylases, we found that depletion of Pumilio in EBV-infected cells increased RGC-32 protein expression and polyA tail length. The extent of Pumilio binding to the endogenous RGC-32 mRNA in EBV-infected cell lines also correlated with RGC-32 protein expression. Our data demonstrate the importance of RGC-32 for the survival of EBV-immortalised B cells and identify Pumilio as a key regulator of RGC-32 translation

    AMI observations of northern supernova remnants at 14-18 GHz

    Full text link
    We present observations between 14.2 and 17.9 GHz of 12 reported supernova remnants (SNRs) made with the Arcminute Microkelvin Imager Small Array (AMI SA). In conjunction with data from the literature at lower radio frequencies, we determine spectra of these objects. For well-studied SNRs (Cas A, Tycho's SNR, 3C58 and the Crab Nebula), the results are in good agreement with spectra based on previous results. For the less well-studied remnants the AMI SA observations provide higher-frequency radio observations than previously available, and better constrain their radio spectra. The AMI SA results confirm a spectral turnover at ~11 GHz for the filled-centre remnant G74.9+1.2. We also see a possible steepening of the spectrum of the filled-centre remnant G54.1+0.3 within the AMI SA frequency band compared with lower frequencies. We confirm that G84.9+0.5, which had previously been identified as a SNR, is rather an HII region and has a flat radio spectrum.Comment: 12 pages, 24 figures, accepted MNRA

    Calcium Homeostasis and Cone Signaling Are Regulated by Interactions between Calcium Stores and Plasma Membrane Ion Channels

    Get PDF
    Calcium is a messenger ion that controls all aspects of cone photoreceptor function, including synaptic release. The dynamic range of the cone output extends beyond the activation threshold for voltage-operated calcium entry, suggesting another calcium influx mechanism operates in cones hyperpolarized by light. We have used optical imaging and whole-cell voltage clamp to measure the contribution of store-operated Ca2+ entry (SOCE) to Ca2+ homeostasis and its role in regulation of neurotransmission at cone synapses. Mn2+ quenching of Fura-2 revealed sustained divalent cation entry in hyperpolarized cones. Ca2+ influx into cone inner segments was potentiated by hyperpolarization, facilitated by depletion of intracellular Ca2+ stores, unaffected by pharmacological manipulation of voltage-operated or cyclic nucleotide-gated Ca2+ channels and suppressed by lanthanides, 2-APB, MRS 1845 and SKF 96365. However, cation influx through store-operated channels crossed the threshold for activation of voltage-operated Ca2+ entry in a subset of cones, indicating that the operating range of inner segment signals is set by interactions between store- and voltage-operated Ca2+ channels. Exposure to MRS 1845 resulted in ∼40% reduction of light-evoked postsynaptic currents in photopic horizontal cells without affecting the light responses or voltage-operated Ca2+ currents in simultaneously recorded cones. The spatial pattern of store-operated calcium entry in cones matched immunolocalization of the store-operated sensor STIM1. These findings show that store-operated channels regulate spatial and temporal properties of Ca2+ homeostasis in vertebrate cones and demonstrate their role in generation of sustained excitatory signals across the first retinal synapse

    Gadamer’s Hermeneutic Contribution to a Theory of Time-Consciousness

    Get PDF
    The nature of time-consciousness is one of the central themes of phenomenology, and one that all major phenomenologists have addressed at length, except Hans-Georg Gadamer. This paper attempts to develop Gadamer’s account of time-consciousness by looking, firstly, at two essays related to the topic, and then turning to his discussion of experience in Truth and Method (1960/1991) before, finally, considering his discussion of the unique temporality of the festival in the essay “The Relevance of the Beautiful” (1977/1986). What we find in Gadamer’s understanding of time is an emphasis on the epochal structure of timeconsciousness. Indo-Pacific Journal of Phenomenology, Volume 7, Edition 2 September 200
    corecore