21 research outputs found

    The ALICE experiment at the CERN LHC

    Get PDF
    ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries. Its overall dimensions are 161626 m3 with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008

    Imagerie densitométrique 3D des volcans par muographie

    No full text
    Muography is an imaging technique in particle physics where atmospheric muons passing through a target are used to determine information about the interior of the target : density distribution or chemical composition via the atomic number. Depending on the energy of the muons and the amount of matter they have to cross, some of them will survive and others will be stopped by the target. And, the diffusion of the muons depends, to a first approximation, on their momentum and the average atomic number along their flight path. Muography proposes, from the measurement of the transmission and/or diffusion of muons through a target, to provide information about its interior.There are currently two types of muography : transmission muography, where the transmitted flux of muons through the target is measured to infer the density distribution of that target, and diffusion muography, where the diffusion of muons through the target is used to determine the distribution of the atomic number of the target. This thesis discusses transmission muography in order to radiography volcanoes.In the case of transmission muography, a muon telescope is used to measure the transmitted flux of atmospheric muons through the target. This flux is, to a first approximation, a bijective function of the amount of matter encountered by the muons. The idea is to invert the measured number of muons into a density estimation of the target.There are other imaging methods in geophysics that can be used to reconstruct the density of a target. This is the case, for example, of gravimetry and seismic imaging. These so-called conventional methods have weaknesses. For these methods, the inversion problem is either ill-posed, i.e. there is no unique solution, or the solution presents large variations for small variations of the parameters on which it depends. A set of additional constraints are then added to remove the non-uniqueness.In muography however, the inversion problem is well posed and the solution is unique. Conventional geophysical methods alone cannot determine the density of a target. Combined with muography, they have great potential, either by providing other information on the rock and/or on the nature of the water, or by improving the accuracy of the target density reconstruction.Several experiments use the CSDA (Continuous Slowing Down Approximation) approximation to estimate the survival probability of muons through a target. Using this approximation, thus neglecting the stochastic character of the interaction of muons with matter, underestimates the muon survival probability and therefore induces systematic effects on the density reconstruction. In standard rock kilometers the effect is 3% - 8% depending on the modeling of the interaction of high energy muons with matter. In addition, a bad estimation of the background of the low momentum muons affecting the measurement of the signal results in an underestimation of the density of the target with respect to the gravimetry. This probably comes from the use of the analytical approximation to simulate the propagation of the muons through the target and the difficulty of rejecting in the measurement those with low momentum. For these reasons, in the Muon IMaging (MIM) experiment (where this thesis was conducted), we use a Monte Carlo treatment to simulate the muon transport through the target. In this case, we can accurately estimate the effet of these low momentum muons on the density reconstruction. One of the techniques used in our experiment, to make the low momentum muons scatter so that they can be statistically rejected, is to insert a thickness of lead between the telescope detection planes. (...)La muographie est une technique d’imagerie en physique des particules oĂč les muons atmosphĂ©riques traversant une cible sont utilisĂ©s pour dĂ©terminer des informations de l’intĂ©rieur de la cible : distribution de la densitĂ© ou composition chimique via le numĂ©ro atomique. En fonction de l’énergie des muons et de la quantitĂ© de matiĂšre Ă  traverser, il y en a qui vont survivre et d’autres qui vont ĂȘtre arrĂȘtĂ©s par la cible. Et, la diffusion des muons dĂ©pend, en premiĂšre approximation, de leur impulsion et du numĂ©ro atomique moyen le long de leur parcours de vol. La muographie propose, Ă  partir de la mesure de la transmission et/ou de la diffusion des muons Ă  travers la cible, de fournir des informations sur son intĂ©rieur.Il existe actuellement deux types de muographie : la muographie par transmission oĂč le flux transmis des muons Ă  travers la cible est mesurĂ© pour infĂ©rer la distribution de densitĂ© de la cible et la muographie par diffusion oĂč la diffusion des muons Ă  travers la cible est utilisĂ©e pour dĂ©terminer la distribution du numĂ©ro atomique de la cible. Cette thĂšse traite de la muographie par transmission pour radiographier les volcans.Dans le cas de la muographie par transmission, un tĂ©lescope Ă  muons est utilisĂ© pour mesurer le flux transmis des muons atmosphĂ©riques Ă  travers la cible. Ce flux est, en premiĂšre approximation, une fonction bijective de la quantitĂ© de matiĂšre rencontrĂ©e par les muons. L’idĂ©e est d’inverser le nombre de muons mesurĂ©s en une estimation de la densitĂ© de la cible.Il existe d’autres mĂ©thodes d’imagerie en gĂ©ophysique permettant de reconstruire la densitĂ© d’une cible. C’est le cas, par exemple, de la gravimĂ©trie et de l’imagerie par sismicitĂ©. Ces mĂ©thodes dites conventionnelles prĂ©sentent des faiblesses. Pour ces mĂ©thodes, le problĂšme d’inversion est soit mal posĂ©, c’est-Ă -dire il n’existe pas de solution unique ou la solution prĂ©sente de grandes variations pour de petites variations des paramĂštres dont elle dĂ©pend. Un ensemble de contraintes supplĂ©mentaires sont alors ajoutĂ©es pour enlever la non-unicitĂ©.En muographie par contre, le problĂšme d’inversion est bien posĂ© et la solution est unique. Les mĂ©thodes conventionnelles en gĂ©ophysique ne permettent pas, Ă  elles seules, de dĂ©terminer la densitĂ© de la cible. Jointes avec la muographie, elles prĂ©sentent de gros potentiel, soit en fournissant d’autres informations sur la roche et/ou sur la nature de l’eau, soit en amĂ©liorant la prĂ©cision sur la reconstruction de la densitĂ© de la cible.Plusieurs expĂ©riences utilisent l’approximation CSDA (Continuous Slowing Down Approximation) pour estimer la probabilitĂ© de survie des muons Ă  travers une cible. Le fait d’utiliser cette approximation, donc de nĂ©gliger le caractĂšre stochastique de l’interaction des muons avec la matiĂšre, sous-estime la probabilitĂ© de survie des muons et par consĂ©quent induit des effets systĂ©matiques sur la reconstruction de la densitĂ©. Dans les kilomĂštres de roche standard l’effet est de 3% - 8% en fonction de la modĂ©lisation de l’interaction des muons de hautes Ă©nergies avec la matiĂšre. En outre, une mauvaise estimation du bruit de fond des muons de basse impulsion qui affectent la mesure du signal rĂ©sulte en une sous-estimation de la densitĂ© de la cible par rapport Ă  la gravimĂ©trie. Cela vient probablement de l’utilisation de l’approximation analytique pour simuler la propagation des muons Ă  travers la cible et de la difficultĂ© de rejeter dans la mesure ceux de basse impulsion. Pour ces raisons, dans l’expĂ©rience MIM (Muon IMaging) (oĂč cette thĂšse a Ă©tĂ© rĂ©alisĂ©e), nous utilisons un traitement Monte Carlo pour simuler le transport des muons Ă  travers la cible. Dans ce cas, nous pouvons estimer prĂ©cisĂ©ment l’effet de ces muons de basse impulsion sur la reconstruction de la densitĂ©. (...

    Imagerie densitométrique 3D des volcans par muographie

    No full text
    Muography is an imaging technique in particle physics where atmospheric muons passing through a target are used to determine information about the interior of the target : density distribution or chemical composition via the atomic number. Depending on the energy of the muons and the amount of matter they have to cross, some of them will survive and others will be stopped by the target. And, the diffusion of the muons depends, to a first approximation, on their momentum and the average atomic number along their flight path. Muography proposes, from the measurement of the transmission and/or diffusion of muons through a target, to provide information about its interior.There are currently two types of muography : transmission muography, where the transmitted flux of muons through the target is measured to infer the density distribution of that target, and diffusion muography, where the diffusion of muons through the target is used to determine the distribution of the atomic number of the target. This thesis discusses transmission muography in order to radiography volcanoes.In the case of transmission muography, a muon telescope is used to measure the transmitted flux of atmospheric muons through the target. This flux is, to a first approximation, a bijective function of the amount of matter encountered by the muons. The idea is to invert the measured number of muons into a density estimation of the target.There are other imaging methods in geophysics that can be used to reconstruct the density of a target. This is the case, for example, of gravimetry and seismic imaging. These so-called conventional methods have weaknesses. For these methods, the inversion problem is either ill-posed, i.e. there is no unique solution, or the solution presents large variations for small variations of the parameters on which it depends. A set of additional constraints are then added to remove the non-uniqueness.In muography however, the inversion problem is well posed and the solution is unique. Conventional geophysical methods alone cannot determine the density of a target. Combined with muography, they have great potential, either by providing other information on the rock and/or on the nature of the water, or by improving the accuracy of the target density reconstruction.Several experiments use the CSDA (Continuous Slowing Down Approximation) approximation to estimate the survival probability of muons through a target. Using this approximation, thus neglecting the stochastic character of the interaction of muons with matter, underestimates the muon survival probability and therefore induces systematic effects on the density reconstruction. In standard rock kilometers the effect is 3% - 8% depending on the modeling of the interaction of high energy muons with matter. In addition, a bad estimation of the background of the low momentum muons affecting the measurement of the signal results in an underestimation of the density of the target with respect to the gravimetry. This probably comes from the use of the analytical approximation to simulate the propagation of the muons through the target and the difficulty of rejecting in the measurement those with low momentum. For these reasons, in the Muon IMaging (MIM) experiment (where this thesis was conducted), we use a Monte Carlo treatment to simulate the muon transport through the target. In this case, we can accurately estimate the effet of these low momentum muons on the density reconstruction. One of the techniques used in our experiment, to make the low momentum muons scatter so that they can be statistically rejected, is to insert a thickness of lead between the telescope detection planes. (...)La muographie est une technique d’imagerie en physique des particules oĂč les muons atmosphĂ©riques traversant une cible sont utilisĂ©s pour dĂ©terminer des informations de l’intĂ©rieur de la cible : distribution de la densitĂ© ou composition chimique via le numĂ©ro atomique. En fonction de l’énergie des muons et de la quantitĂ© de matiĂšre Ă  traverser, il y en a qui vont survivre et d’autres qui vont ĂȘtre arrĂȘtĂ©s par la cible. Et, la diffusion des muons dĂ©pend, en premiĂšre approximation, de leur impulsion et du numĂ©ro atomique moyen le long de leur parcours de vol. La muographie propose, Ă  partir de la mesure de la transmission et/ou de la diffusion des muons Ă  travers la cible, de fournir des informations sur son intĂ©rieur.Il existe actuellement deux types de muographie : la muographie par transmission oĂč le flux transmis des muons Ă  travers la cible est mesurĂ© pour infĂ©rer la distribution de densitĂ© de la cible et la muographie par diffusion oĂč la diffusion des muons Ă  travers la cible est utilisĂ©e pour dĂ©terminer la distribution du numĂ©ro atomique de la cible. Cette thĂšse traite de la muographie par transmission pour radiographier les volcans.Dans le cas de la muographie par transmission, un tĂ©lescope Ă  muons est utilisĂ© pour mesurer le flux transmis des muons atmosphĂ©riques Ă  travers la cible. Ce flux est, en premiĂšre approximation, une fonction bijective de la quantitĂ© de matiĂšre rencontrĂ©e par les muons. L’idĂ©e est d’inverser le nombre de muons mesurĂ©s en une estimation de la densitĂ© de la cible.Il existe d’autres mĂ©thodes d’imagerie en gĂ©ophysique permettant de reconstruire la densitĂ© d’une cible. C’est le cas, par exemple, de la gravimĂ©trie et de l’imagerie par sismicitĂ©. Ces mĂ©thodes dites conventionnelles prĂ©sentent des faiblesses. Pour ces mĂ©thodes, le problĂšme d’inversion est soit mal posĂ©, c’est-Ă -dire il n’existe pas de solution unique ou la solution prĂ©sente de grandes variations pour de petites variations des paramĂštres dont elle dĂ©pend. Un ensemble de contraintes supplĂ©mentaires sont alors ajoutĂ©es pour enlever la non-unicitĂ©.En muographie par contre, le problĂšme d’inversion est bien posĂ© et la solution est unique. Les mĂ©thodes conventionnelles en gĂ©ophysique ne permettent pas, Ă  elles seules, de dĂ©terminer la densitĂ© de la cible. Jointes avec la muographie, elles prĂ©sentent de gros potentiel, soit en fournissant d’autres informations sur la roche et/ou sur la nature de l’eau, soit en amĂ©liorant la prĂ©cision sur la reconstruction de la densitĂ© de la cible.Plusieurs expĂ©riences utilisent l’approximation CSDA (Continuous Slowing Down Approximation) pour estimer la probabilitĂ© de survie des muons Ă  travers une cible. Le fait d’utiliser cette approximation, donc de nĂ©gliger le caractĂšre stochastique de l’interaction des muons avec la matiĂšre, sous-estime la probabilitĂ© de survie des muons et par consĂ©quent induit des effets systĂ©matiques sur la reconstruction de la densitĂ©. Dans les kilomĂštres de roche standard l’effet est de 3% - 8% en fonction de la modĂ©lisation de l’interaction des muons de hautes Ă©nergies avec la matiĂšre. En outre, une mauvaise estimation du bruit de fond des muons de basse impulsion qui affectent la mesure du signal rĂ©sulte en une sous-estimation de la densitĂ© de la cible par rapport Ă  la gravimĂ©trie. Cela vient probablement de l’utilisation de l’approximation analytique pour simuler la propagation des muons Ă  travers la cible et de la difficultĂ© de rejeter dans la mesure ceux de basse impulsion. Pour ces raisons, dans l’expĂ©rience MIM (Muon IMaging) (oĂč cette thĂšse a Ă©tĂ© rĂ©alisĂ©e), nous utilisons un traitement Monte Carlo pour simuler le transport des muons Ă  travers la cible. Dans ce cas, nous pouvons estimer prĂ©cisĂ©ment l’effet de ces muons de basse impulsion sur la reconstruction de la densitĂ©. (...
    corecore