157 research outputs found

    Accuracy of genomic breeding values in multi-breed dairy cattle populations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Two key findings from genomic selection experiments are 1) the reference population used must be very large to subsequently predict accurate genomic estimated breeding values (GEBV), and 2) prediction equations derived in one breed do not predict accurate GEBV when applied to other breeds. Both findings are a problem for breeds where the number of individuals in the reference population is limited. A multi-breed reference population is a potential solution, and here we investigate the accuracies of GEBV in Holstein dairy cattle and Jersey dairy cattle when the reference population is single breed or multi-breed. The accuracies were obtained both as a function of elements of the inverse coefficient matrix and from the realised accuracies of GEBV.</p> <p>Methods</p> <p>Best linear unbiased prediction with a multi-breed genomic relationship matrix (GBLUP) and two Bayesian methods (BAYESA and BAYES_SSVS) which estimate individual SNP effects were used to predict GEBV for 400 and 77 young Holstein and Jersey bulls respectively, from a reference population of 781 and 287 Holstein and Jersey bulls, respectively. Genotypes of 39,048 SNP markers were used. Phenotypes in the reference population were de-regressed breeding values for production traits. For the GBLUP method, expected accuracies calculated from the diagonal of the inverse of coefficient matrix were compared to realised accuracies.</p> <p>Results</p> <p>When GBLUP was used, expected accuracies from a function of elements of the inverse coefficient matrix agreed reasonably well with realised accuracies calculated from the correlation between GEBV and EBV in single breed populations, but not in multi-breed populations. When the Bayesian methods were used, realised accuracies of GEBV were up to 13% higher when the multi-breed reference population was used than when a pure breed reference was used. However no consistent increase in accuracy across traits was obtained.</p> <p>Conclusion</p> <p>Predicting genomic breeding values using a genomic relationship matrix is an attractive approach to implement genomic selection as expected accuracies of GEBV can be readily derived. However in multi-breed populations, Bayesian approaches give higher accuracies for some traits. Finally, multi-breed reference populations will be a valuable resource to fine map QTL.</p

    Estimated breeding values and association mapping for persistency and total milk yield using natural cubic smoothing splines

    Get PDF
    BackgroundFor dairy producers, a reliable description of lactation curves is a valuable tool for management and selection. From a breeding and production viewpoint, milk yield persistency and total milk yield are important traits. Understanding the genetic drivers for the phenotypic variation of both these traits could provide a means for improving these traits in commercial production.MethodsIt has been shown that Natural Cubic Smoothing Splines (NCSS) can model the features of lactation curves with greater flexibility than the traditional parametric methods. NCSS were used to model the sire effect on the lactation curves of cows. The sire solutions for persistency and total milk yield were derived using NCSS and a whole-genome approach based on a hierarchical model was developed for a large association study using single nucleotide polymorphisms (SNP).ResultsEstimated sire breeding values (EBV) for persistency and milk yield were calculated using NCSS. Persistency EBV were correlated with peak yield but not with total milk yield. Several SNP were found to be associated with both traits and these were used to identify candidate genes for further investigation.ConclusionNCSS can be used to estimate EBV for lactation persistency and total milk yield, which in turn can be used in whole-genome association studies.Klara L. Verbyla and Arunas P. Verbyl

    Breeding value prediction for production traits in layer chickens using pedigree or genomic relationships in a reduced animal model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genomic selection involves breeding value estimation of selection candidates based on high-density SNP genotypes. To quantify the potential benefit of genomic selection, accuracies of estimated breeding values (EBV) obtained with different methods using pedigree or high-density SNP genotypes were evaluated and compared in a commercial layer chicken breeding line.</p> <p>Methods</p> <p>The following traits were analyzed: egg production, egg weight, egg color, shell strength, age at sexual maturity, body weight, albumen height, and yolk weight. Predictions appropriate for early or late selection were compared. A total of 2,708 birds were genotyped for 23,356 segregating SNP, including 1,563 females with records. Phenotypes on relatives without genotypes were incorporated in the analysis (in total 13,049 production records).</p> <p>The data were analyzed with a Reduced Animal Model using a relationship matrix based on pedigree data or on marker genotypes and with a Bayesian method using model averaging. Using a validation set that consisted of individuals from the generation following training, these methods were compared by correlating EBV with phenotypes corrected for fixed effects, selecting the top 30 individuals based on EBV and evaluating their mean phenotype, and by regressing phenotypes on EBV.</p> <p>Results</p> <p>Using high-density SNP genotypes increased accuracies of EBV up to two-fold for selection at an early age and by up to 88% for selection at a later age. Accuracy increases at an early age can be mostly attributed to improved estimates of parental EBV for shell quality and egg production, while for other egg quality traits it is mostly due to improved estimates of Mendelian sampling effects. A relatively small number of markers was sufficient to explain most of the genetic variation for egg weight and body weight.</p

    Positive biodiversity-productivity relationship predominant in global forests

    Get PDF
    The biodiversity-productivity relationship (BPR) is foundational to our understanding of the global extinction crisis and its impacts on ecosystem functioning. Understanding BPR is critical for the accurate valuation and effective conservation of biodiversity. Using ground-sourced data from 777,126 permanent plots, spanning 44 countries and most terrestrial biomes, we reveal a globally consistent positive concave-down BPR, showing that continued biodiversity loss would result in an accelerating decline in forest productivity worldwide. The value of biodiversity in maintaining commercial forest productivity alone - US$166 billion to 490 billion per year according to our estimation - is more than twice what it would cost to implement effective global conservation. This highlights the need for a worldwide reassessment of biodiversity values, forest management strategies, and conservation priorities.Peer Reviewe

    Bayesian Analysis of Curves Shape Variation Through Registration and Regression

    Full text link
    This manuscript reviews the use of Bayesian hierarchical curve registration in Biostatistics and Bioinformatics.Several models allowing for unit-specific random time scales are discussed and applied to longitudinal dataarising in biomedicine, pharmacokinetics and time-course genomics. We consider representations of random functionals based on P-spline priors. Under this framework, straightforward posterior simulation strategies are outlined for inference.Beyond curve registration, we discuss jointregression modeling of both random effects and population level functional quantities. Finally, the use of mixture priors is discussed in the setting of differential expression analysis

    High Resolution Genomic Scans Reveal Genetic Architecture Controlling Alcohol Preference in Bidirectionally Selected Rat Model

    Get PDF
    Investigations on the influence of nature vs. nurture on Alcoholism (Alcohol Use Disorder) in human have yet to provide a clear view on potential genomic etiologies. To address this issue, we sequenced a replicated animal model system bidirectionally-selected for alcohol preference (AP). This model is uniquely suited to map genetic effects with high reproducibility, and resolution. The origin of the rat lines (an 8-way cross) resulted in small haplotype blocks (HB) with a corresponding high level of resolution. We sequenced DNAs from 40 samples (10 per line of each replicate) to determine allele frequencies and HB. We achieved ~46X coverage per line and replicate. Excessive differentiation in the genomic architecture between lines, across replicates, termed signatures of selection (SS), were classified according to gene and region. We identified SS in 930 genes associated with AP. The majority (50%) of the SS were confined to single gene regions, the greatest numbers of which were in promoters (284) and intronic regions (169) with the least in exon\u27s (4), suggesting that differences in AP were primarily due to alterations in regulatory regions. We confirmed previously identified genes and found many new genes associated with AP. Of those newly identified genes, several demonstrated neuronal function involved in synaptic memory and reward behavior, e.g. ion channels (Kcnf1, Kcnn3, Scn5a), excitatory receptors (Grin2a, Gria3, Grip1), neurotransmitters (Pomc), and synapses (Snap29). This study not only reveals the polygenic architecture of AP, but also emphasizes the importance of regulatory elements, consistent with other complex traits
    corecore