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Abstract

Continuous-time Markov processes are often used to model the complex natural phenomenon of sequence evolution. To
make the process of sequence evolution tractable, simplifying assumptions are often made about the sequence properties
and the underlying process. The validity of one such assumption, time-homogeneity, has never been explored. Violations of
this assumption can be found by identifying non-embeddability. A process is non-embeddable if it can not be embedded in
a continuous time-homogeneous Markov process. In this study, non-embeddability was demonstrated to exist when
modelling sequence evolution with Markov models. Evidence of non-embeddability was found primarily at the third codon
position, possibly resulting from changes in mutation rate over time. Outgroup edges and those with a deeper time depth
were found to have an increased probability of the underlying process being non-embeddable. Overall, low levels of non-
embeddability were detected when examining individual edges of triads across a diverse set of alignments. Subsequent
phylogenetic reconstruction analyses demonstrated that non-embeddability could impact on the correct prediction of
phylogenies, but at extremely low levels. Despite the existence of non-embeddability, there is minimal evidence of
violations of the local time homogeneity assumption and consequently the impact is likely to be minor.
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Introduction

DNA sequences are widely used to infer evolutionary relation-

ships among species, genes, and genomes. When modelling

sequence evolution, like other complex natural phenomenon,

simplifying assumptions are made for efficient computation. For

sequence evolution maximum likelihood estimation for a proba-

bilistic model is most common. This is because maximum

likelihood estimation is statistically consistent (provided the

underlying model is identifiable). All probabilistic models of

sequence evolution generally adopt a set of simplifying assump-

tions relating to the sequence properties and the evolutionary

process to make the models computationally tractable and

statistically efficient. Markov models are commonly used and

make the fundamental assumption that sites evolve independently

according to a Markov process. The Markov chain is often

assumed to be stationary, reversible, continuous and time-

homogeneous. Stationarity assumes the process is in equilibrium

resulting in equivalent ancestral and stationary base frequencies.

Reversibility presumes the process appears identical when moving

forward or backward in time, resulting in symmetric joint

frequencies of ancestral and descendant bases. Continuity assumes

the time interval between successive substitutions can be any

positive number. Time-homogeneity means substitution rates at

any time are fixed, described by a rate matrix (Q). A globally

homogeneous process assumes that all branches share the same

rate matrix. To relax the assumption of global time-homogeneity,

some approaches now allow separate substitution rate matrices for

each branch of the tree (local time homogeneity).

These computationally useful assumptions are in contrast to

what is understood as the biological reality; for example,

compositional changes in base frequencies are a feature of

sequence evolution [1]. When assumptions are violated and the

model cannot account for the confounding signals in the data, the

inferred results have been demonstrated to be inconsistent and

erroneous (e.g. [2–11]). Such studies revealed violations of the

assumption(s) tested i.e. model misspecification, and demonstrated

that these violations increase error rates and can result in the

inference of the wrong tree topology and evolutionary distances.

Despite these findings, when examining other assumptions, the

validity of the presumption of local time-homogeneity has yet to be

explored and so is examined in this study.

Sequences may have evolved from a homogeneous or inhomo-

geneous, time-continuous or discrete process. However because

modelling a time-continuous inhomogeneous process is statistically

infeasible, homogeneity is assumed when the widely implemented

time-continuous models are used. The alternative can, to some

extent, be captured by a discrete process. This alternative process

could be time-continuous but inhomogeneous or simply discrete.

The most commonly implemented discrete model was proposed

by [12]. This model is referred to in this study as the BH model.

Their approach makes only the assumption of process-homoge-

neity, but does not assume continuity, time-homogeneity (local or
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global), reversibility or stationarity. The BH model formulation

has no instantaneous rate matrices, Q, but uses an independent

transition probability matrix, P, for each edge. If the process

captured in the transition matrix (P) is a discrete manifestation of

an underlying time homogeneous and continuous Markov chain,

then relationship

P~eQ ð1Þ

holds (where e is the matrix exponential). If the relationship holds

true then the process is said to be embeddable and can in fact be

modelled as continuous and time homogeneous. Conversely if the

assumption of homogeneity is violated, the relationship in (1) does

not hold and the underlying process is said to be non-embeddable.

It could be non-embeddable because the process is discrete or

continuous and time-inhomogeneous such that a P exists where,

for example, P~eQ1t1eQ2t2 eQ3t3 describes the process but there is

no valid instantaneous rate matrix satisfying (1).

P and Q matrices satisfying (1) must have certain characteristics

in order to be valid Markov matrices. The substitution rate matrix

Q is normally constrained to satisfy 3 conditions. It must have non-

negative off-diagonals qij§0 for i=j where i,j[S and

S~ A,C,G,Tf g, the rows must sum to 0,
Xn

j~1
qij~0 for

i~1,::,n (where n is the dimension of Q, n~4 for nucleotides) and

pQ~0 where p are the base frequencies. The transition

probability matrix P is defined to have rows that sum to 1,Xn

j~1
pij~1 for i~1,::,n. A validly defined Q matrix will

produce a valid P [13]. However, the reverse is not true.

Q~ log (P), the converse of (1), can result in a valid Q, an invalid

Q (a Q with negative off-diagonals) or be unable to produce a Q
(the matrix logarithm of P can not be calculated). In the cases

where no valid Q can be produced, P is non-embeddable and

cannot be embedded into a continuous and time-homogeneous

chain.

The question of how to formally determine if a transition matrix

(P) is embeddable is known as the embedding (or imbedding)

problem and was first described in [14]. This study established the

sufficient conditions for embeddability for a 262 matrix. Further

investigations have been carried out into the sufficient conditions

for embeddability for the 363 case for both time-homogeneous

and non-homogeneous processes [15–21]. The complicating issue

is that for a n|n matrix where nw3 there are no simple sufficient

general conditions for establishing if P is embeddable. A set of

simple steps for the n|n case was put forward by [22] to enable

the identification of matrices that were non-embeddable. The

results of this study have been widely implemented in the sociology

field for analyses with Markov processes and are adopted here.

Non-embeddability will occur where there is a need for different

instantaneous rate matrices Q per branch (see Figure 1) caused

either by a discrete process or by a time-continuous but

inhomogeneous process. Evident from Figure 1 is that a natural

control exists when modelling sequence evolution with an

unrooted tree. On the outgroup edge in any unrooted tree are

dual Q matrices reflecting that this branch contains both forward

and backward time. Consequently, it is expected that if non-

embeddability exists then it is likely to be found on the outgroup

edge. In addition, it was suspected that non-embeddability was

more likely to exist on edges with larger time depths.

The aim of this study was first to determine if there was

evidence of violations of the assumption of local time-continuous

homogeneity through establishing the existence of non-embedd-

ability. Secondly, the study sought to determine the extent and

effect of the occurrence of non-embeddability when modelling

evolutionary processes with a time-homogeneous continuous

Markovian model. Species triads from across the tree of life were

analysed for evidence of non-embeddability. Due to unequal

selection and mutagenesis pressures at the different codon

positions, protein coding alignments were divided into codon

positions. At each codon position, all edges in each sequence triad

were tested separately for evidence of non-embeddability by

allowing each individual edge to have independent P and Q
matrices. The evidence of non-embeddability was gathered by

assessing the characteristics of the P (and Q) matrices. A

parametric bootstrap approach comparing the log-likelihood ratio

statistic (logLR) was then used to determine if there was a

difference in model fit for those alignments where a non-

embeddable P was identified. A significant difference in model

fit confirmed the violation of the assumption of time-homogeneity

and that the process was non-embeddable. Once the study had

demonstrated the existence of non-embeddability, the effect of

non-embeddability, and consequently the violation of the

assumption of local time-homogeneity, on phylogenetic recon-

struction was explored.

Materials and Methods

Data
Four diverse datasets were used to test for the existence of non-

embeddability across the tree of life. The characteristics of the

datasets are summarised in Table 1. All datasets contained

orthologs for at least three taxa and had distinct outgroup(s).

Species triads were employed due to the consistency property of

maximum likelihood tree reconstruction which showed that the

joint distributions of three terminal nodes are enough to determine

the full model [23]. For each data set, the sequences were aligned

with all ambiguous sites and gaps removed using the progressive

aligner from PyCogent [24]. Protein coding sequences were

separated into codon positions due to the different selection

pressure at each location [25,26]. The identification of non-

embeddability at a particular codon position will give an indication

of whether the violation of the continuous time-homogeneous

assumption is caused by a mutation or selection rate change. The

Figure 1. Rooted (a) and unrooted (b) phylogenetic tree with
embeddable (single Q) and non-embeddable (multiple Q)
edges.
doi:10.1371/journal.pone.0069187.g001
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datasets span both the vertebrates and microbes in order to fully

investigate the existence of non-embeddability.

Vertebrates
The vertebrate alignments were obtained from Ensembl release

58 except for the intron dataset which was obtained from Ensembl

release 50. The sampling process for this intron dataset is

described in detail in [27]. The first data set (D1) was used to

investigate whether elapsed evolutionary time (time depth)

influenced the existence of non-embeddability. This was investi-

gated by using three triads with varied time depth between taxa.

The triads of human, mouse and opossum, had the longest time

depth between all taxa with opossum functioning as the outgroup.

The triad of mouse, rat and opossum had a shorter time depth

between the two ingroup taxa. The final triad consisting only of

Eutherian taxa (mouse, rat, human) contains the shortest time

depth between all taxa with the human group functioning as the

outgroup. Whether non-embeddability occurred in both the

nuclear and mitochondrial genomes was explored using datasets

D1(nuclear) and D2 (mitochondrial). The intronic dataset (D3) was

included to examine whether sequence function (coding/non-

coding) impacted upon the presence of non-embeddability. The

dinucleotide model was used to analyse this dataset as it has been

demonstrated to give an improved model fit for this data [27].

Microbes
A single microbial protein-coding gene was selected to assess the

extent of non-embeddability across a range of species. Twenty

microbial species with differing estimated evolutionary divergence

were randomly chosen from an aligned set of 197 microbial species

for the gene, translation initiation factor, IF-2, originally extracted

from the KEGG database [28]. The 197 species were originally

selected as they had at least 500 orthologs from a set of 2226

orthologs that spanned at least 60 species. All 1140 possible triads

for the 20 species for this gene were investigated for evidence of

non-embeddability.

Substitution Models
For each triad, every edge was modelled separately assuming a

discrete or continuous time homogeneous process. The assump-

tions for each process can be found in Table 2. Two differing

Markov substitution models were used to test each edge for non-

embeddability. The first model (herein referred to as the mixed

model) assumed a continuous and time homogeneous process on

the edge being tested for non-embeddability, while all other edges

in this model and all edges in the second model (the discrete

model) were modelled as discrete using the BH model (see Table 3).

The models for the discrete and continuous processes applied to

individual edges are described in the next section. All edges in both

models were assumed to have a process that was independently

and identically distributed, iid. If the process on an edge being

tested was non-embeddable (i.e. generated by multiple Q see

Figure 1) then a discrete model not assuming time-homogeneity

for that edge will produce an non-embeddable P and have a better

model fit than a mixed model. Conversely if a single Q accurately

describes the underlying process on an edge then the discrete

model will generate a embeddable P and will have the same model

fit as the mixed model.

Maximum likelihood was used to obtain the model fit and

parameter estimates for both models. The likelihood function was

optimised using two optimisation approaches available in the

PyCogent toolkit; the Powell method [29] and simulated annealing

(global optimisation) [30]. Initial parameter estimates for the

mixed model were provided by a continuous, globally time

homogeneous model to help ensure optimisation. The parameter

values for all edges from the mixed model were subsequently used

as initial starting values for the discrete model. Providing initial

parameter estimates to BH models is suggested as the algorithm is

known to converge to local maxima if the initial values used for the

Q matrices are not diagonally dominant or if the rate of

Table 1. Summary of Datasets.

Data Set Taxaa Number of Alignments Sequence Length (bp) Total Tree length b

D1: Nuclear protein-
coding genes

O,M,H 8193 .300 1.7081

O,M,R 8014 .300 1.5622

H,M,R 8394 .300 0.6890

D2: Mitochondrial
protein-coding genes

M, H, O 11 67–598 3.7267

D3: Primate introns C, H, Ma 62 .50,000 0.0763

D4: Microbial protein-
coding genes

bad, bas, bba, bbu, bpn, bvu,
cjk, dps, eca, ent, kra, lla, lre,
mgi, mle, mta, ppe, pth, sma,
wsu d

1 591–867 1.935

a – C: Chimpanzee, H:Human, M:Mouse, Ma:Macaque, O:Opossum, R:Rat, bad:Bifidobacterium adolescentis, bas: Buchnera aphidicola Sg, bba:Bdellovibrio bacteriovorus,
bbu:Borrelia burgdorferi B31, bpn: Candidatus Blochmannia pennsylvanicus, bvu: Bacteroides vulgatus, cjk:Corynebacterium jeikeium, dps:Desulfotalea psychrophila,
eca:Pectobacterium atrosepticum, ent:Enterobacter sp. 638, kra:Kineococcus radiotolerans, lla:Lactococcus lactis subsp. lactis IL1403, lre:Lactobacillus reuteri DSM 20016,
mgi:Mycobacterium gilvum, mle:Mycobacterium leprae TN, mta:Moorella thermoacetica, ppe:Pediococcus pentosaceus, pth:Pelotomaculum thermopropionicum,

sma:Streptomyces avermitilis, wsu:Wolinella succinogenes, b – average length from consensus tree , d -All possible triads (1140).
doi:10.1371/journal.pone.0069187.t001

Table 2. Markov Process Assumptions for an Edge.

Assumption Continuous Discrete (BH)

Time- Homogeneity ! X

Reversibility X X

Stationary X X

Independent Sites ! !

doi:10.1371/journal.pone.0069187.t002
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convergence is too slow [31–33]. To check the stability of the

original mixed model parameter estimates, parameter estimates

from the discrete model were used as the starting values for a

second optimisation of the mixed model. If a non-embeddable P
matrix was found using the discrete model, then there was no valid

Q matrix to use as starting parameters for the mixed model.

Consequently, the nearest valid Q for this edge was found by

minimising the Frobenius norm of the difference between the non-

embeddable P and estimated nearest embeddable P i.e. a P that

produces a valid Q (see Appendix A in Supporting Information

S1). The logLR for the second optimisation of the mixed model

was then compared with the original estimate to ensure stability

and correct optimisation. The overall testing scheme is displayed

in Figure 2.

Continuous and Discrete Markov Processes
There were 39 unknown parameters in both the mixed and fully

discrete nucleotide models (12 for each P and 3 parameters for the

base frequencies i.e. pA,pC ,pG where pT~1{pA{pC{pG ) and

735 unknown parameters for the dinucleotide case (240 for each P
and 15 parameters for the dinucleotide frequencies). Each P was

produced either assuming a discrete (BH model) or continuous

process. Under the BH model, a P matrix is calculated based on

the joint probability distribution of the nucleotides at each end of

an edge. The likelihood was maximised using a system of iterative

equations for the joint probability distributions along each edge.

This approach for an unrooted triple of sequences from three

species is well described in [33] and in more general terms in [32].

For a continuous process, the time-homogeneous transition

probabilities, P, are governed by the forward Kolmogorov

equation and the initial condition:

dP(t)

dt
~QP(t), P(0)~I ð2Þ

where P and Q are 4|4 matrices and Q has the structure

Q~

ACGT

A

C

G

T

{ qAC qAG qAT

qCA { qCG qCT

qGA qGC { qGT

qTA qTC qTG {

0
BBB@

1
CCCA

where

qij§0, for i=j,qiiƒ0,
X
j[S

qij~0, for i[S

The functions, P(t),tw0, which are solutions of (1), comprise

the transition matrices of a time homogeneous continuous Markov

chain. Solutions for (2) are given by:

P(t)~eQt,tw0 ð3Þ

If the time factor is removed then (3) becomes P~eQ.

Constrained optimisation is used to find a valid Q [34]. It is then

exponentiated to find an estimate of P.

Embeddability
Let P be a time-homogeneous transition matrix for a discrete

Markov chain with finite states. If P is a discrete manifestation of a

continuous and time-homogeneous Markov chain, then P is said

Table 3. Summary of The Two Markov Models.

Edge Testeda Mixed Model Discrete Model

1 Yes Continuous b Discrete

2 No Discrete Discrete

3 No Discrete Discrete

a – tested for non-embeddability, b – Assumption of local time-homogeneity.
doi:10.1371/journal.pone.0069187.t003

Figure 2. Testing scheme.
doi:10.1371/journal.pone.0069187.g002

A TC G
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to be embeddable and consequently Q is said to generate P such

that, as in (1):

P~eQ

However, this only holds true if P can be embedded in a

continuous Markov process. Whether P is embeddable can be

determined by mathematically assessing the characteristics of the

P and Q matrices.

The steps for determining if the transition matrix, P, is

embeddable where n§3 and adopted in this study are as follows:

1. det (P)w0 [22,34,35].

2. The negative eigenvalues of P must have even algebraic

multiplicity [14,16,22].

3. Any complex eigenvalues of P must occur in conjugate pairs

[16,22].

4. All eigenvalues of P must lie inside a ‘heart shaped’ region in

the complex plane whose boundary is the curve x(v)ziy(v)
where

x vð Þ~ exp {vzv cos
2p

n

� �� �
sin v sin

2p

n

� �

y vð Þ~ exp {vzv cos
2p

n

� �� �
cos v sin

2p

n

� �

with v restricted to 0ƒvƒp= sin 2p=nð Þ [22,36].

5. Examine Q for negative off-diagonals [37].

These steps are necessary but not sufficient and were the first

stage of identifying non-embeddability in this study. This stage

produced a reduced set of alignments for which an edge had a

non-embeddable P identified. This set of alignments was then

examined using a parametric bootstrap.

Parametric Bootstrap
A parametric bootstrap scheme was implemented for two

reasons. The first was because the distribution of the logLR is

unknown. This is due to the identical number of parameters in

each model (mixed and discrete). Therefore to determine whether

there is a significant difference in model fit, a parametric bootstrap

is required to establish the null distribution for the logLR.

Secondly, the parametric bootstrap will also enable the determi-

nation of whether a non-embeddable P matrix found when

examining the characteristics of P and Q is caused by a truly non-

embeddable process. Maximum likelihood estimates of P may

identify non-embeddability just because substitutions are stochastic

and computational precision issues could cause an non-embed-

dable P despite the underlying process being time homogeneous.

The parametric bootstrap was used to test the null hypothesis,

H0: The process can be embedded in a continuous chain and there

is no violation of the time-homogeneous assumption i.e. the mixed

model produces the same model fit, versus the alternative

hypothesis, H1: The process is not embeddable in a continuous

chain and there is a violation of the time-homogeneous

assumption i.e. the discrete model has a better model fit than

the mixed model. 1000 parametric bootstrap samples were

simulated under the null hypothesis (H0) to establish the

distribution of the test statistic for each alignment. This was

carried out only for edges of alignments where a non-embeddable

matrix was identified. The bootstrap testing scheme is outlined as

follows:

1. Determine the logLR (d) for the observed alignment

dobs~logLH1
{logLH0

, where logLH1
is the log likelihood

produced by the discrete model and logLH0
is the log likelihood

indicated by the mixed model (with a continuous process fitted

for the edge that produced a non-embeddable matrix).

2. Generate 1000 bootstrapped datasets of the alignment under

the null hypothesis (H0).

3. Calculate the difference in logLR statistics dbt~logLH1
{

logLH0
for each bootstrap data set.

4. Calculate the proportion p of times that dbtwdobs.

5. Reject the null hypothesis, H0, when the proportion pv0:05
and confirm non-embeddability for the edge of the alignment

tested.

In addition to the negative control described above, a positive

control was also implemented. The parameter estimates from an

randomly selected alignment found to have a non-embeddable

edge was used to generate 1000 bootstrapped samples (i.e. under

the alternative hypothesis). Each sample was 1000 base pairs in

length. These were then tested for evidence of non-embeddability

by examining the matrix characteristics and using the parametric

bootstrap. The number of simulated alignments identified as non-

embeddable was then calculated to determine the power of the

procedure to correctly classify alignments generated by a non-

embeddability process.

Phylogenetic Reconstruction
One important aim when modelling sequence evolution is to

establish the correct relationship between the sequences and

construct an accurate phylogenetic tree. Despite finding evidence

that a model fits the data better than an alternative model, this

does not always translate into different results when constructing

the most probable trees [31]. To assess whether incorrectly

modelling a process as time-homogeneous (and therefore embed-

dable) has an effect on phylogenetic reconstruction, a fully general

continuous model assuming local time-homogeneity for all edges

and the discrete BH model were used to find the most probable

tree using maximum likelihood. The two models were used as

implemented in the PyCogent toolkit with the continuous model

(‘‘General’’ model in PyCogent) having P matrices for all edges set

as independent to allow the assumption of local time-homogeneity

(default setting is for global time-homogeneity). Datasets D1 and

D3 were used. In the mammalian dataset (D1), 8005 alignments

with sequences for the tetrad of mouse, rat, human and opossum

were separated into codon positions. The second dataset contained

4845 tetrads formed using dataset D3 for the 20 species and gene

IF2. Each alignment at all codon positions had a minimum length

of 300 bp and the number of variable sites was required to be at

least ten percent of total number of sites. This was to limit the

possibility of incorrectly finding differences between models caused

by a lack of information. For each tetrad the most probable tree

was predicted using each model. Finding a difference in the

predicted most probable trees will indicate a violation of the

assumption of local homogeneity (and therefore non-embedd-

ability of the process) can cause biases in phylogenetic construc-

tion.

The most probable tree was first estimated using the

implemented ML trex method [38] in PyCogent. In cases where

the models predicted a different tree for the same tetrad, the

optimisation of the models was checked by fitting the complete

models for two most probable trees in PyCogent. The total

The Embedding Problem of Sequence Evolution Models
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number of inconsistencies between the predicted phylogenies were

then calculated for the separate codon positions.

Results

Evidence of non-embeddability was found in all 4 datasets

analysed. The number of non-embeddable matrices and number

of non-embeddable processes (where the null hypothesis was

rejected in the parametric bootstrap) for each alignment and triad

examined are shown in Tables 4–9. The assessment of the number

and magnitude of negative off-diagonal elements when testing for

non-embeddable matrices revealed an extremely high number of

very small negative elements. This was most likely due to precision

and sampling and thus a threshold of 20.1 for off-diagonal

elements was used to declare non-embeddability for a Q matrix.

This was an arbitrary threshold based on inspection of the results.

Vertebrates
The results for the three Mammalian triads from the nuclear

protein-coding dataset (D1) are presented in Tables 4–6. The

number of non-embeddable processes varied across the three

triads although it almost always occurred at the third codon

position. For the Eutherian triad, only a small number of non-

embeddable matrices and processes were identified on the human

(outgroup) edge at the third codon position. For the mouse, rat,

opossum triad again non-embeddability was identified only on the

outgroup edge (opossum) at the third position. The final triad of

mouse, human and opossum had non-embeddable processes

identified on all edges at the third codon position. A single non-

embeddable process was identified at the first position on the

outgroup (opossum) edge. In the mammalian mitochondrial

protein coding data (D2), for a single alignment the mouse edge

showed evidence of non-embeddability (Table 7).

As found in the vertebrate protein coding datasets, non-

embeddability was identified in the primate intron dataset (D3).

Non-embeddability was indicated on the Macaque (outgroup)

edge by inspecting the matrices for 16 of the 62 alignments

analysed (see Table 8). Due to the time constraints and

computational demands caused by use of the dinucleotide model,

only 100 parametric bootstrap replicates were run. Consequently,

significant evidence for non-embeddability was declared in

parametric bootstrap when there were fewer than ten parametric

bootstrap replicates with a logLR greater than the original logLR

(p-valuev0:1) as 1000 bootstraps are considered the minimum

required to declare significance with a p-value of 0.05 [39]. The

use of the slightly less stringent threshold (p-valuev0:1) allows for

the fact that 100 samples are not fully representative of the true

null distribution. Of the 16 alignments with non-embeddable

matrices, 5 were also found to have nominally significant evidence

from the parametric bootstrap for non-embeddability using a 0.1

p-value. However should a p-value of 0.05 be used, two alignments

would still indicate non-embeddability with this limited number of

samples. No evidence of non-embeddability was indicated on

either of the other two edges in any alignments.

Microbes
The Microbial data provided the highest number of non-

embeddable matrices with 716 triads having all three edges

showing evidence of non-embeddability (Table 9). A further 311

triads had two edges showing evidence of non-embeddability and

95 triads had a single edge where a non-embeddable matrix was

identified. However, only a total of 27 edges were found to have

non-embeddable processes in the parametric bootstrap. Note that

there were significant convergence issues during the parametric

bootstrap with the mixed model for 584 triads failing to find stable

estimates. While the mixed model appeared to converged to a set

of parameter estimates within the set number of iterations (100 K),

repeating the model fit revealed different parameter estimates.

This indicated that the model may have been converging to

different local maxima. In contrast, despite considering different

starting parameters, the discrete model was able to converge to the

same parameter estimates. This failure of the mixed model to

converge meant that the parametric bootstrap was unable to

determine if assuming discrete process resulted in an improved

model fit over the mixed model.

As this data set contained triads constructed for a single gene

across multiple microbial species, to ensure that the results was not

an artifact of this particular alignment a second gene, nusA (N

utilization substance protein A), was similarly analysed. The results for

the non-embeddability analysis revealed almost identical results

(779, 318 and 95 triads had non-embeddable matrices established

on 3, 2 and 1 edge respectively). This indicated that the high

finding of non-embeddable matrices was not constrained to the

initial gene tested. The parametric bootstrap was not carried out

Table 4. Non-Embeddability – D1 Human, Rat, Mouse Triad (8394 Alignments).

STEPS a

Edge Codon position 1 2 3 4 5 NEb Matrices NE Processesc

Human 1 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0d

3 16 16 0 3 91 107 6 (5.6)

Mouse 1 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0

3 1 1 0 0 0 1 0

Rat 1 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0

3 0 0 0 0 2 2 0

a Steps to identify Non-embeddability 1. detPv0, 2. Negative eigenvalues have odd algebraic multiplicity, 3. Complex eigenvalues occur in non-conjugate pairs, 4. The

set of eigenvalues, lj

� �
, lie outside the region in the complex plane, 5. Q – negative off-diagonals – threshold 20.1, b NE = Non-Embeddable, c No. rejections of H0

from parametric bootstrap scheme with a p-value v0:05 (percentage of total tests), d 1 Alignment failed to find stable estimates.
doi:10.1371/journal.pone.0069187.t004
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for the alignments for this second gene due to the computational

and time demands.

Phylogenetic Reconstruction
After establishing the existence of non-embeddable processes for

sequence evolution, the focus changed to identifying any possible

consequences of modelling a process (or multiple processes) as

embeddable where this assumption may not be valid. The results

of the phylogenetic reconstruction analysis reveal that the

incorrect modelling of non-embeddable processes may have an

impact on correct phylogenetic reconstruction. The results for

each codon position and gene (D4) or species (D1) are shown in

Table 10. Inconsistencies between the two models are again most

present at codon position 3. For tetrads formed using sequences in

dataset D3 almost twenty percent of the tetrads tested had

differing probable trees at the third codon position. To test if these

high findings were an artifact of the gene and possibly atypical,

tetrads formed from alignments from a second gene, nusA (N

utilization substance protein A), for the same 20 microbial

sequences were tested for different probable trees using the same

approach. The results for nusA returned much lower differences

but in the same pattern with the third codon position providing the

most inconsistencies. The tetrads formed using the mammalian

dataset (D1) also revealed this pattern but at an extremely low

level.

Discussion

The purpose of identifying non-embeddability was to examine

the validity of the common assumption of time-homogeneity by

establishing cases where the assumption was violated. Violations

were identified by establishing cases where non-embeddable

matrices occurred and where a discrete model, making no

assumptions about homogeneity, had a significantly better fit than

a model assuming time-homogeneity. However, recently [40]

demonstrated that under specific conditions there are instances

where time-inhomogeneity can be accurately modelled by a time-

homogeneous model.

Table 5. Non-Embeddability – D1 Opossum, Rat, Mouse Triad (8014 Alignments).

STEPS a

Edge Codon position 1 2 3 4 5 NEb Matrices NE Processes c

Opossum 1 0 0 0 0 4 4 0

2 0 0 0 0 0 0 0d

3 117 119 0 26 638 777 43 (5.5)

Mouse 1 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0

3 1 1 0 1 2 2 0

Rat 1 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0

3 0 0 0 0 1 1 0

a Steps to identify Non-embeddability 1. detPv0, 2. Negative eigenvalues have odd algebraic multiplicity, 3. Complex eigenvalues occur in non-conjugate pairs, 4. The

set of eigenvalues, lj

� �
, lie outside the region in the complex plane, 5. Q – negative off-diagonals – threshold 20.1, b NE = Non-Embeddable, c No. rejections of H0

from parametric bootstrap scheme with a p-value v0:05 (percentage of total tests), d 1 Alignment failed to find stable estimates.
doi:10.1371/journal.pone.0069187.t005

Table 6. Non-Embeddability – D1 Opossum, Mouse, Human Triad (8194 Alignments).

STEPS a

Edge Codon position 1 2 3 4 5 NEb Matrices NE Processes c

Opossum 1 3 3 0 3 4 7 1d

2 0 0 0 0 0 0 0

3 73 76 0 40 478 547 40 (7.3)

Human 1 1 1 0 1 0 1 0

2 0 0 0 0 0 0 0

3 24 24 0 14 75 99 12 (12.1)

Mouse 1 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0

3 20 20 0 19 87 108 5 (4.6)

a Steps to identify Non-embeddability 1. detPv0, 2. Negative eigenvalues have odd algebraic multiplicity, 3. Complex eigenvalues occur in non-conjugate pairs, 4. The

set of eigenvalues, lj

� �
, lie outside the region in the complex plane, 5. Q – negative off-diagonals – threshold 20.1, b NE = Non-Embeddable, c No. rejections of H0

from parametric bootstrap scheme with a p-value v0:05 (percentage of total tests), d 1 Alignment failed to find stable estimates.
doi:10.1371/journal.pone.0069187.t006
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For models that were multiplicatively closed it was demonstrat-

ed that it is possible for an inhomogeneous process to be precisely

modelled as homogeneous [44]. They show that if a given Markov

model L (such as the continuous model used here) forms a Lie

algebra, and if the process is time-inhomogeneous e.g. described

by two valid Q matrices that are in the model QA,QB[L (with

parameters allowed to be in the complex field), then there exists a

matrix QAB[L that can accurately describe the net process such

that exp(QAB)~exp(QA)exp(QB). However it is possible that

QAB is not even stochastic if the rates have changed dramatically

from QA and QB (as the case may be when modelling backward

and forward time on the outgroup edge) or have parameters in the

complex field (J. Sumner, personal communication, November

2012) meaning that that in these instances the process will be non-

embeddable. It is possible that there are alignments that have been

generated by a time-inhomogeneous process, but due to multipli-

cative closure of the continuous model used, that are embeddable.

However should a similar study be carried out using the General

Time Reversible (GTR) model, a model which is not multiplica-

tively closed, then all occurrences of time-homogeneity would

cause non-embeddability. This may result in increased occurrenc-

es of non-embeddability and increase the chances of incorrect

inference using such a model.

Non-embeddability
Non-embeddability was identified for a number of alignments

examined, indicating that for these alignments a time-homoge-

neous continuous model could not accurately model the under-

lying time-inhomogeneous process. Non-embeddable processes

were generally found to occur on the outgroup edge or on edges

with a large time depth and for protein-coding regions, at the third

codon position. There was a clear difference in the number of non-

embeddable matrices identified and the number of these

subsequently classified as non-embeddable processes using the

parametric bootstrap. Two possible causes are precision issues

during the calculations and that the true process is actually

embeddable or can be modelling accurately by an embeddable

process.

Precision issues could cause the declaration of a non-

embeddable P when in fact the true P is embeddable. Precision

issues were identified when examining Q for negative off-

diagonals; many matrices with extremely small negative entries

were found. It was determined that these were artificial and most

likely caused by precision during calculation. Consequently, a Q
was only declared to have a negative off-diagonal element if the

off-diagonal had a magnitude greater than 0.1. This was an

Table 7. Non-Embeddability-D2 (Opossum) Mitochondrial Protein coding genes (11 Alignments).

STEPS a

Edge Codon position 1 2 3 4 5 NEb Matrices NE Processes c

Opossum 1 0 0 0 0 1 1 0

2 0 0 0 0 0 0 0

3 1 1 0 1 8 9 0d

Mouse 1 0 0 0 0 1 1 0

2 0 0 0 0 0 0 0

3 2 2 0 0 5 7 1d

Human 1 0 0 0 0 1 1 0

2 0 0 0 0 0 0 0

3 1 1 0 0 8 9 0d

a Steps to identify Non-embeddability 1. detPv0, 2. Negative eigenvalues have odd algebraic multiplicity, 3. Complex eigenvalues occur in non-conjugate pairs, 4. The

set of eigenvalues, lj

� �
, lie outside the region in the complex plane, 5. Q – negative off-diagonals – threshold 20.1, b NE = Non-Embeddable, c No. rejections of H0

from parametric bootstrap scheme with a p-value v0:05 (percentage of total tests), d 3 Alignments failed to find stable estimates.
doi:10.1371/journal.pone.0069187.t007

Table 8. Non-Embeddability – D3: Primate Introns
Dinucleotide Model (62 alignments).

STEPS a

Edge 1 2 3 4 5
NEb

Matrices
NE
Processes c

Macaque 0 0 0 0 16 16 5 (31.3)

Human 0 0 0 0 0 0 0

Chimpanzee 0 0 0 0 0 0 0

a Steps to identify Non-embeddability 1. detPv0, 2. Negative eigenvalues have
odd algebraic multiplicity, 3. Complex eigenvalues occur in non-conjugate

pairs, 4. The set of eigenvalues, lj

� �
, lie outside the region in the complex

plane, 5. Q – negative off-diagonals – threshold 20.1, b NE = Non-Embeddable,
c No. rejections of H0 from parametric bootstrap scheme with a p-value v0:10

(percentage of total tests).
doi:10.1371/journal.pone.0069187.t008

Table 9. Non-Embeddability- D4 Microbial Protein Coding
Gene (1140 Triads).

STEPS a

Codon
position 1 2 3 4 5

NEb

Matrices
NE
Processesc

1 0 0 0 0 2 2 0

2 0 0 0 0 0 0 0

3 574 591 0 470 1052 1122 27d

a Steps to identify Non-embeddability 1. detPv0, 2. Negative eigenvalues have
odd algebraic multiplicity, 3. Complex eigenvalues occur in non-conjugate

pairs, 4. The set of eigenvalues, lj

� �
, lie outside the region in the complex

plane, 5. Q – negative off-diagonals – threshold 20.1, b NE = Non-Embeddable,
c No. rejections of H0 from parametric bootstrap scheme with a p-value v0:05,
d 584 Alignments failed to find stable estimates.
doi:10.1371/journal.pone.0069187.t009
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arbitrary threshold based only on the presumption that this would

exclude the majority of negative elements caused by any precision

issues. However, precision issues are unlikely to be the major cause

of the difference between the number of non-embeddable matrices

and processes identified by the parametric bootstrap. The positive

control revealed that 97% of the alignments simulated using a non-

embeddable matrix were correctly identified as being generated by

a non-embeddable process. This demonstrates that the approach

has considerable power (for the generating conditions) to correctly

identify processes generated by non-embeddable matrices using

the parametric bootstrap.

Examination of the differences between the P matrices

produced assuming a discrete process (labelling this P as

Pdiscrete) and assuming a continuous homogeneous process

(Pcontinuous) for an edge found to have a non-embeddable Pdiscrete

matrix revealed two distinct features. The first was that the closer

together the two matrices were in 12 dimensional space the less

likely the parametric bootstrap would find significant evidence of a

difference in model fit indicating non-embeddability. The

Frobenius norm (see Appendix) was used to measure the distance

between Pdiscrete and Pcontinuous (e.g. DDPdiscrete{PcontinuousDDF ). This

distance was on average double for alignments where the

parametric bootstrap found significant evidence of non-embedd-

ability compared to those where no evidence was identified. For

the opossum, mouse and human triad in the mammalian data set

(D1) the average distance between Pdiscrete and Pcontinuous, when

Pdiscrete was non-embeddable, was 0.222 for alignments found to

have significant evidence of non-embeddability in the parametric

bootstrap compared to 0.117 for those without significant

evidence. This suggests that if an embeddable P is close enough

to the non-embeddable P in 12 dimensional space then the

embeddable P may be able to accurately model the process,

explaining why the parametric bootstrap finds no significant

difference in model fit. However, quantifying how close is close

enough requires more investigation. This feature is also evident in

Figure 3. Figure 3 displays, for the mammalian data set (D1), the

average difference for Pdiscrete{Pcontinuous, where Pdiscrete is non-

embeddable, for processes found with significant evidence of being

non-embeddable and those without evidence. The white repre-

sents a larger transition probability in the Pdiscrete (i.e.

Pdiscrete{Pcontinuousw0) and black a larger transition probability

in the Pcontinuous (i.e. Pdiscrete{Pcontinuousv0). The alignments

found to be embeddable using the parametric bootstrap can be

seen to have smaller magnitude differences between Pdiscrete and

Pcontinuous.

The second distinct feature is that for an alignment with a non-

embeddable Pdiscrete and significant evidence of a difference in

model fit, there appears to have been an increased overall

probability that a nucleotide will undergo a change to a different

nucleotide. Examining the difference between the P matrices

(Pdiscrete{Pcontinuous) for non-embeddable processes shows that the

Pcontinuous matrices are more diagonally dominant (see Figure 3).

The Pdiscrete has larger off-diagonals (shown by larger white

squares). As the rows of P must add to one, in a non-embeddable

Pdiscrete matrix there is, on average, an increased rate of nucleotide

change.

For the observed non-embeddable matrices, we asked whether

they are likely to have arisen from non-embeddable processes via

parametric bootstrap. (Note that for embeddable matrices the

question could not be evaluated even via parametric bootstrap

because the likelihoods from the general continuous-time Markov

equals, within precision, that from BH.) Across our datasets, the

percentage of non-embeddable matrices that were indicative of

non-embeddable processes at 5% significance varied from 0 to

12.1%. The most notable excesses are shown in Tables 6 and 8.

For example, in Table 6, we observe that of the 99 non-

embeddable matrices on the Human branch there was evidence of

non-embeddable processes in 12 cases. This is in excess of the

roughly 5% of cases in which we would expect to see significant

results by chance alone. We conclude that non-embeddable

processes exist amongst the cases where we observe non-

embeddable matrices.

Time depth is a determining factor for identifying Non-
Embeddability

Time depth was expected to be a factor in identifying non-

embeddability. Biologically, the greater the time depth on an edge

the more likely a change in selection or mutation occurred

requiring multiple Q to model the process. Theoretically, when

examining the matrix characteristics, for a continuous homoge-

neous process it is known that if P~eQt then det(P)~etr(Q)t where

tr(Q) is the trace of the Q matrix (the sum of the diagonal entries

or eigenvalues of Q). When t or tr(Q) becomes large then det(P)
tends toward zero, which will result in a non-embeddable P.

Hence, when t is large non-embeddable P are more likely to be

found. However, the number of matrices indicated as non-

embeddable due to det(P)v0 was significantly less than the

number indicated by negative off-diagonals in Q (Tables 4–9).

The impact of time depth on the occurrence of non-

embeddability was primarily examined using the three Mamma-

lian triads from the vertebrate data set (D1). Time depth is shown

to be a determining factor for the identifying non-embeddability

Table 10. Phylogenetic reconstruction results.

Codon Position

Species or
Gene 1 2 3

Total Possible Tetrads or
Alignments

IF2a 135 69 910 4845b

numAa 85 67 135 4845b

Mammalian 3 1 8 8005c

a – Microbial tetrads for 20 species (numA :N utilization substance protein

A,IF2:translation initiation factor IF-2), b – Total Number of Tetrads , c – Total
Number of Alignments.
doi:10.1371/journal.pone.0069187.t010

Figure 3. Average difference between matrices produced by
the continuous (Pcontinuous) and discrete (Pdiscrete) models (i.e.

�PP~
1

n

X
n

Pdiscrete{Pcontinuous) for alignments with non-embed-

dable (Pdiscrete) matrices which were found to be (a) Non-
embeddable or (b) Embeddable using the parametric boot-
strap. Where % represents a larger transition probability in Pdiscrete

(e.g. Pdiscrete{Pcontinuousw0) and & indicates a larger transition
probability in Pcontinuous (e.g. Pdiscrete{Pcontinuousv0).
doi:10.1371/journal.pone.0069187.g003
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on both the ingroup and outgroup edges. This is clearly captured

by examining the total number of non-embeddable processes for

the three triads. An extremely low number of non-embeddable

processes were identified for the Eutherian triad which has the

shortest time depth between both the ingroup edges and the

outgroup. The only evidence of non-embeddable processes were

identified on the outgroup edge. However when the opossum taxa

was used as the outgroup instead of the human taxa, this increase

in time depth between the ingroup edges and the outgroup

resulted in an increased number of non-embeddable processes

established on the outgroup edge. The effect of deepening the time

depth between ingroup taxa was examined using the opossum,

human and mouse triad. This triad showed evidence of non-

embeddable processes for a number of alignments on the ingroup

edges.

The assertion that non-embeddability would be found on the

outgroup edge is supported by datasets D1 and D3 (not examined

in D4). Analysis of the primate intron data set (D3) showed only

evidence of non-embeddability on the Macaque (outgroup) edge.

Non-embeddability was indicated for 5 of the 62 alignments

analysed. However in the mitochondrial dataset (D2), non-

embeddability was indicated at the third codon position for

mouse, an ingroup taxa. The results for the mitochondrial dataset

must be interpreted with caution due to the small number of

alignments and the possibility that the results may be confounded

by the heterogeneous mutation rate found across the mitochon-

drial genome and genes e.g. [41]. This difference across sites

rather than across time may confound the inferences and result in

findings of non-embeddability on ingroup edges. However, if rate

heterogeneity was causing false findings of non-embeddability

across all datasets, then more evidence of non-embeddability

would be expected to be found at the second codon position. The

second position has been reported to exhibit the most rate

heterogeneity [26]. In all datasets we considered there was no

evidence of non-embeddability at the second position suggesting

that rate heterogeneity is unlikely to be causing false findings of

violations of the time-homogeneity assumption in the other

datasets.

It is worth noting that the transition matrices from existing

approaches to rate-heterogeneity are in fact non-embeddable.

Several approaches to modelling rate heterogeneity have in

common the specification of a transition matrix that is a weighted

sum of other transition matrices. For instance, for the covarion

model of Penny et al [42], one could construct a 4|4 transition

matrix by marginalising the 8|8 transition matrix. This 4|4
matrix is non-embeddable in general because it is a rather

complicated combination of the two sets of underlying transition

matrices. For discrete rates-across-sites models (e.g. discrete C ,

[43]), the transition matrix is a weighted average of exp (Qit),
where the Qi’s are scaled versions of each other. For the

continuous version (the C distribution, e.g. [44]), the weighted

sum is replaced by an integral. In both cases, transition matrices

are not embeddable. These three classes of models are robust to

non-embeddability of the same kind as that implied by the models,

i.e. when the true process and specified model are the same.

Mutation And Not Selection Drives Non-Embeddability
Evidence from the protein coding datasets clearly show that

violations of the time-homogeneity assumption are codon position

sensitive. Non-embeddability principally affects the third codon

position across the protein coding vertebrate and microbial

datasets. If non-embeddability had been identified at codon

position 2 this would likely indicate a change in the influence of

selection, as all substitutions at codon position 2 causes amino-acid

changes (non-synonymous substitutions). However evidence of

non-embeddability was found predominately at the third codon

position, the position that is the least constrained by selection for

amino acids. Consequently the most likely cause is a change in the

processes of mutagenesis. Additionally, evidence that non-

embeddability also affects long (w50000 bp) intron sequences

(Table 8) further supports the notion that mutagenesis is the cause

of the violation of the time homogeneous assumption, resulting in

evidence of non-embeddable processes.

Examination of the features of the Mammalian alignments (D1)

found that non-embeddable alignments revealed a strong GC bias

at the third codon position. The alignments that the matrices

indicated as non-embeddable had a significantly higher GC

content at the third position than those indicated as embeddable

(p-values v0:001 when comparing the GC content of the two

groups). This feature is displayed for the mouse, human and

opossum triad in Figure 4. The reason for this finding is not

completely understood but it is likely that it is caused by biased-

gene conversion [45]. In addition the GC content of alignments

could be a candidate for driving mutagenesis. Observations that

GC content is positively correlated with substitution rate [46,47]

suggest a link between regions of high GC and mutation rate.

Non-embeddability affects Phylogenetic Reconstruction
Violations of the assumption of time homogeneity is shown to

impact phylogenetic reconstruction. All codon positions appear to

be affected, however, the third codon position appears the most

problematic. These results coupled with the triad non-embedd-

ability outcomes indicate that the third codon position is more

susceptible to violations of the time-homogeneous assumption than

either the first or second positions. To avoid possible violations of

assumptions, the results indicate that using second codon position

may provide the best option. However the degree of violation is

dependent on the dataset; for example in the mammalian data set

there were very few inconsistencies. This low number of

inconsistencies may be a result of strong signals within the data

indicating the phylogenetic structure for this tetrad. This means

there is enough information for models (despite assumption

violations) to correctly estimate the phylogenetic relationships.

This is not always the case, as demonstrated in the microbial

dataset.

There has been considerable debate about the use of the third

position versus the first and second positions for phylogenetic

reconstruction. This is because the first and second codon

positions are considered to show less homoplasy (similarity due

to convergent evolution). It was initially accepted that slowly

evolving nucleotide sites were phylogenetically more informative

than more rapidly evolving ones, especially for recognising more

ancient groupings. For this reason third codon positions are often

regarded as less reliable. However, [48] reported that ‘‘contrary to

earlier expectations, increasing saturation and frequency of change

actually improve the ability to recognize well-supported phyloge-

netic groups.’’ They concluded that eliminating third positions

from phylogenetic analysis to be detrimental. However [49]

reanalysed the same data and determined that while using the first

and second position was a conservative approach, the phylogenetic

groups supported by first and second positions, even if fewer in

number, were compatible with those groups supported by third

positions. The results presented here would suggest that the

sampling of the second position while conservative would also

avoid any possible violations of the time homogeneous assumption.
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Computing Issues
Optimisation can be problematic with such richly parame-

terised models and as such was specifically focused on during this

study. A staged process of beginning with a simpler model e.g.

globally time-homogeneous model, was found to increase the

likelihood of convergence within a set number of maximum

evaluations (normally 100 K). However as found within the

microbial data set at the third codon position, convergence to a

maximum within in the set number of evaluations did not ensure

that the estimates found were stable. The mixed model was found

at times to converge to different parameter estimates despite

identical starting parameters provided by the global continuous

model. Although this did change the parameter estimates provided

to the discrete model, the discrete model was always able to

converge to the same stable estimates. The reason for this may be

that for these alignments especially at the third codon position,

there was an extremely high amount of variation across the

sequences (e.g. 94% of sites were variable compared to 53% for the

third position in the mammalian data set (D1)). The high number

of variable sites appears to have resulted in the mixed model

finding multiple local maxima, allowing the algorithm to exit

before it reached the maximum number of evaluations. The

discrete model was demonstrated to be more robust under these

conditions.

Similarly a lack of information in alignments also affected

optimisation. Short alignments and alignments with few variable

nucleotides were found to be more likely to have unstable

estimates as well as indicate non-embeddability and discrepancies

between models (e.g. in mitochondrial data set (D2) when the

sequence length was less than 150 bp). Alignments of reasonable

length (300bp) but still with low number of variable sites between

species were primarily found at the first and second positions and

were also found to have unstable estimates.

Conclusion

Violations of the local time-homogeneity assumption, evident

through findings of non-embeddability, have been shown to exist

when modelling sequence evolution with Markov models. Low

levels of non-embeddability were detected when examining

individual edges of triads across a diverse set of alignments. A

deeper time depth between taxa increased the probability of a

process being non-embeddable, while the outgroup edge was also

shown to be the most likely to require multiple instantaneous rate

matrices (Q) to describe the underlying process. Subsequent

phylogenetic reconstruction analyses demonstrated that non-

embeddability could impact on the correct establishment of

phylogenies. However, the occurrence of inconsistencies was low.

While violations of the time homogeneity assumption appear to

have minimal impact in some datasets, the existence of non-

embeddability and possibility of any violations should be

considered when modelling any evolutionary process.

Supporting Information

Supporting Information S1 Appendix A- The estimation
of a valid Q from a non-embeddable P using the
Frobenius norm.
(PDF)
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