25 research outputs found
Respuesta fisiológica y química de clones de Ulmus minor susceptibles y resistentes a la grafiosis tras la inoculación con Ophiostoma novo-ulmi
Los motivos por los que algunos genotipos de
Ulmus minor
Mill. resisten más que otros a la infección
con el hongo patógeno
Ophiostoma novo-ulmi
son aun desconocida. Con el objetivo de evaluar si la resis-
tencia a la enfermedad de la grafiosis está relacionada con la posesión de ciertos rasgos fisiológicos o quí-
micos, se compararon clones de
U.
minor
resistentes y susceptibles a la grafiosis, antes y después de la ino-
culación con
O.
novo-ulmi
. Se midieron el potencial hídrico, las tasas de respiración y fotosíntesis foliar,
y la conductividad hidráulica de ramas terminales y su composición química mediante espectroscopía de
infrarrojo (FT-IR). La inoculación con el hongo produjo un aumento en la proporción de vasos emboliza-
dos, de modo que a los 21 días la conductividad hidráulica era solo un 20% de la conductividad máxima
en los clones susceptibles. Como consecuencia, el potencial hídrico y la fotosíntesis disminuyeron entor-
no a un 100-200% en relación a los controles en los clones susceptibles mientras que no hubo reducciones
significativas en los resistentes. Además, los clones mostraron una composición química de sus ramas di-
ferente. Por ejemplo, en los árboles inoculados con agua utilizados como control, el pico de absorción en la región del espectro infrarrojo relacionado con la suberina fue más alto en los clones resistentes que en los susceptibles.Estos resultados sugieren que el perfil químico más defensivo de los clones resistentes les permite mantener la funcionalidad fisiológica tras la inoculación con
O. novo-ulmi prácticamente inalterada, en comparación con los clones más susceptibles
Respuesta fisiológica y química a la inoculación con Ophiostoma novo-ulmi de clones de Ulmus minor susceptibles y resistentes a la enfermedad de la grafiosis
Relación entre la flora endófita de los olmos y su resistencia a la grafiosi
Respuesta fisiológica y química a la inoculación con Ophiostoma novo-ulmi de clones de Ulmus minor susceptibles y resistentes a la enfermedad de la grafiosis
Descripción de la respuesta fisiológica y química a la inoculación con Ophiostoma novo-ulmi de clones de Ulmus minor susceptibles y resistentes a la enfermedad de la grafiosi
Ice nucleation activity in plants : the distribution, characterization, and their roles in cold hardiness mechanisms
Control of freezing in plant tissues is a key issue in cold hardiness mechanisms. Yet freeze-regulation mechanisms remain mostly unexplored. Among them, ice nucleation activity (INA) is a primary factor involved in the initiation and regulation of freezing events in plant tissues, yet the details remain poorly understood. To address this, we developed a highly reproducible assay for determining plant tissue INA and noninvasive freeze visualization tools using MRI and infrared thermography. The results of visualization studies on plant freezing behaviors and INA survey of over 600 species tissues show that (1) freezing-sensitive plants tend to have low INA in their tissues (thus tend to transiently supercool), while wintering cold-hardy species have high INA in some specialized tissues; and (2) the high INA in cold-hardy tissues likely functions as a freezing sensor to initiate freezing at warm subzero temperatures at appropriate locations and timing, resulting in the induction of tissue-/species-specific freezing behaviors (e.g., extracellular freezing, extraorgan freezing) and the freezing order among tissues: from the primary freeze to the last tissue remaining unfrozen (likely INA level dependent). The spatiotemporal distributions of tissue INA, their characterization, and functional roles are detailed. INA assay principles, anti-nucleation activity (ANA), and freeze visualization tools are also described
Increased hydraulic constraints in Eucalyptus plantations fertilized with potassium
International audienceFertilization is commonly used to increase growth in forest plantations, but it may also affect tree water relations and responses to drought. Here, we measured changes in biomass, transpiration, sapwood-to-leaf area ratio (As:Al) and sap flow driving force (ΔΨ) during the 6-year rotation of tropical plantations of Eucalyptus grandis under controlled conditions for throughfall and potassium (K) fertilization. K fertilization increased final tree height by 8 m. Throughfall exclusion scarcely affected tree functioning because of deep soil water uptake. Tree growth increased in K-supplied plots and remained stable in K-depleted plots as tree height increased, while growth per unit leaf area increased in all plots. Stand transpiration and hydraulic conductance standardized per leaf area increased with height in K-depleted plots, but remained stable or decreased in K-supplied plots. Greater Al in K-supplied plots increased the hydraulic constraints on water use. This involved a direct mechanism through halved As:Al in K-supplied plots relative to K-depleted plots, and an indirect mechanism through deteriorated water status in K-supplied plots, which prevented the increase in ΔΨ with tree height. K fertilization in tropical plantations reduces the hydraulic compensation to growth, which could increase the risk of drought-induced dieback under climate chang