447 research outputs found

    VHE Gamma-Ray Induced Pair Cascades in Blazars and Radio Galaxies: Application to NGC 1275

    Full text link
    Recent blazar detections by HESS, MAGIC, and VERITAS suggest that very-high-energy (VHE, E > 100 GeV) gamma-rays may be produced in most, if not all, types of blazars, including those that possess intense circumnuclear radiation fields. In this paper, we investigate the interaction of nuclear VHE gamma-rays with the circumnuclear radiation fields through gamma-gamma absorption and pair production, and the subsequent Compton-supported pair cascades. We have developed a Monte-Carlo code to follow the spatial development of the cascade in full 3-dimensional geometry, and calculate the radiative output due to the cascade as a function of viewing angle with respect to the primary VHE gamma-ray beam (presumably the jet axis of the blazar). We show that even for relatively weak magnetic fields, the cascades can be efficiently isotropized, leading to substantial off-axis cascade emission peaking in the Fermi energy range at detectable levels for nearby radio galaxies. We demonstrate that this scenario can explain the Fermi flux and spectrum of the radio galaxy NGC 1275.Comment: Accepted for publication in The Astrophysical Journa

    Uncertainty Analysis of Experimental Discharge Coefficients in Additively Manufactured Liquid Injector Elements

    Get PDF
    Screening of two additively manufactured liquid injector designs was conducted in the UAH high pressure spray facility. Four variants of each geometry with slightly different dimensions were obtained from eleven separate commercial additive manufacturing services. The devices were manufactured from Inconel 625 using the selective laser melting (SLM) powder bed process. The devices were cold flowed with water over a range of relevant pressure drops (75 psi to 1500 psi) to produce water flow rates from 0.037 to 1.75 lbm/s into ambient back pressure. Discharge coefficients determined from the testing along with the associated uncertainties provide insight into characteristic flow performance variabilities that can be expected from the SLM process for similar geometries

    The intergalactic magnetic field constrained by Fermi/LAT observations of the TeV blazar 1ES 0229+200

    Full text link
    TeV photons from blazars at relatively large distances, interacting with the optical-IR cosmic background, are efficiently converted into electron-positron pairs. The produced pairs are extremely relativistic (Lorentz factors of the order of 1e6 1e7 and promptly loose their energy through inverse Compton scatterings with the photons of the microwave cosmic background, producing emission in the GeV band. The spectrum and the flux level of this reprocessed emission is critically dependent on the intensity of the intergalactic magnetic field, B, that can deflect the pairs diluting the intrinsic emission over a large solid angle. We derive a simple relation for the reprocessed spectrum expected from a steady source. We apply this treatment to the blazar 1ES 0229+200, whose intrinsic very hard TeV spectrum is expected to be approximately steady. Comparing the predicted reprocessed emission with the upper limits measured by the Fermi/Large Area Telescope, we constrain the value of the intergalactic magnetic field to be larger than B5×1015B \simeq 5\times 10^{-15} Gauss, depending on the model of extragalactic background light.Comment: 5 pages 2 figures, revised version accepted for publication in MNRAS (Letters

    Catena-[triaquabis(μ2-1,4-bis(diphenylphosphoryl)butane)nitrato-κ2O-praseodymium(III) nitrate monohydrate methanol solvate

    Get PDF
    The bidentate ligand, 1,4-bis(diphenlyphosphoryl)butane (dppbO2), was used to prepare a 1D polymeric Pr(III) complex which was characterised by single-crystal X-ray diffraction.Peer reviewe

    POEMMA: Probe Of Extreme Multi-Messenger Astrophysics

    Get PDF
    The Probe Of Extreme Multi-Messenger Astrophysics (POEMMA) mission is being designed to establish charged-particle astronomy with ultra-high energy cosmic rays (UHECRs) and to observe cosmogenic tau neutrinos (CTNs). The study of UHECRs and CTNs from space will yield orders-of-magnitude increase in statistics of observed UHECRs at the highest energies, and the observation of the cosmogenic flux of neutrinos for a range of UHECR models. These observations should solve the long-standing puzzle of the origin of the highest energy particles ever observed, providing a new window onto the most energetic environments and events in the Universe, while studying particle interactions well beyond accelerator energies. The discovery of CTNs will help solve the puzzle of the origin of UHECRs and begin a new field of Astroparticle Physics with the study of neutrino properties at ultra-high energies.Comment: 8 pages, in the Proceedings of the 35th International Cosmic Ray Conference, ICRC217, Busan, Kore

    Bright AGN Source List from the First Three Months of the Fermi Large Area Telescope All-Sky Survey

    Full text link
    The first three months of sky-survey operation with the Fermi Gamma Ray Space Telescope (Fermi) Large Area Telescope (LAT) reveals 132 bright sources at |b|>10 deg with test statistic greater than 100 (corresponding to about 10 sigma). Two methods, based on the CGRaBS, CRATES and BZCat catalogs, indicate high-confidence associations of 106 of these sources with known AGNs. This sample is referred to as the LAT Bright AGN Sample (LBAS). It contains two radio galaxies, namely Centaurus A and NGC 1275, and 104 blazars consisting of 57 flat spectrum radio quasars (FSRQs), 42 BL Lac objects, and 5 blazars with uncertain classification. Four new blazars were discovered on the basis of the LAT detections. Remarkably, the LBAS includes 10 high-energy peaked BL Lacs (HBLs), sources which were so far hard to detect in the GeV range. Another 10 lower-confidence associations are found. Only thirty three of the sources, plus two at |b|>10 deg, were previously detected with EGRET, probably due to the variable nature of these sources. The analysis of the gamma-ray properties of the LBAS sources reveals that the average GeV spectra of BL Lac objects are significantly harder than the spectra of FSRQs. No significant correlation between radio and peak gamma-ray fluxes is observed. Blazar log N - log S and luminosity functions are constructed to investigate the evolution of the different blazar classes, with positive evolution indicated for FSRQs but none for BLLacs. The contribution of LAT-blazars to the total extragalactic gamma-ray intensity is estimated.Comment: Submitted to ApJ. Not yet refereed. 61 pages, 26 figure
    corecore