91 research outputs found

    Stable isotope compositions of the Penninic ophiolites of the Kõszeg-Rechnitz series

    Get PDF
    Abstract The ophiolitic rocks of the easternmost Penninic unit, the Kőszeg-Rechnitz series, were analyzed for their H, C and O stable isotope compositions. Serpentinite, gabbro, blueschist, talc deposits, ophicarbonates, as well as calcite and inclusion fluids from quartz segregation veins were analyzed in order to determine the effects of different metamorphic events on the stable isotope compositions. The oxygen isotope compositions have a wide range depending on rock type and locality. Gabbro and serpentinite of Bienenhütte (Bernstein Window) have preserved mantle-like δ18O values (5.9 to 6.3‰; all values are in ‰ relative to V-SMOW), whereas the serpentinite of Glashütten and Rumpersdorf (Kőszeg-Rechnitz Window) and the silicate minerals of the ophicarbonate rocks show a strong 18O-enrichment (up to 16.2‰). The 18O-enrichment may have been induced by low-temperature serpentinization or interaction with 18O-rich fluids that had been in equilibrium with sedimentary rocks. Contrary to the O isotope compositions, the H isotope compositions seem to be homogeneous in the entire series, with D values of −63 ± 7‰. Only some serpentinite rocks were depleted in D (down to −106‰), usually regarded as a result of interaction with meteoric water infiltrating during late-stage metamorphism. The meteoric water infiltration was rather limited, as even samples taken directly from slickensides within serpentinite bodies preserved isotopic compositions close to those of the bulk series. H and O isotope compositions of fluids mobilized in the metasedimentary rocks of the Penninic unit during the main metamorphic stage were determined by analyzing inclusion fluids and calcites in quartz-carbonate veins. The isotope compositions indicate interaction between these fluids and the ophiolite series, although relative deuterium enrichment has been preserved in the ophiolitic rocks. The strong D-enrichment characteristic for oceanic crust that has experienced high-temperature interaction with seawater was not detected. However, the H isotope compositions obtained for the Kőszeg-Rechnitz series indicate that subduction of the Penninic oceanic crust and the associated devolatilization may have been potentially responsible for mantle metasomatism, resulting in H isotope compositions of about −40‰, similar to the range determined from mantle-derived amphibole megacrysts (Demény et al. 2005). To conclude, the present dataset is discussed in the light of earlier studies on the formation of the Sopron leucophyllite

    A simple and inexpensive method of hydrogen isotope and water analyses of minerals and rocks based on zinc reagent

    Full text link
    A new method based on Zn reagent for the quantitative conversion H2O to H2 for the hydrogen isotope analysis of hydrous minerals and whole rocks has been developed. Analyses by this method are of comparable accuracy and precision (~ 1[per mille sign]; 2O) to those of conventional extraction methods based on uranium reagent and is significantly simpler, faster and less expensive.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/31007/1/0000682.pd

    The Magmatic to Hydrothermal Evolution of the Intrusive Mont Saint-Hilaire Complex: Insights into the Late-stage Evolution of Peralkaline Rocks

    Get PDF
    The Cretaceous Mont Saint-Hilaire complex (Quebec, Canada) comprises three major rock units that were emplaced in the following sequence: (I) gabbros; (II) diorites; (III) diverse partly agpaitic foid syenites. The major element compositions of the rock-forming minerals, age-corrected Nd and oxygen isotope data for mineral separates and trace element data of Fe-Mg silicates from the various lithologies imply a common source for all units. The distribution of the rare earth elements in clinopyroxene from the gabbros indicates an ocean island basalt type composition for the parental magma. Gabbros record temperatures of 1200 to 800°C, variable silica activities between 0·7 and 0·3, and fO2 values between −0·5 and +0·7 (log ΔFMQ, where FMQ is fayalite-magnetite-quartz). The diorites crystallized under uniform aSiO2 (aSiO2 = 0·4-0·5) and more reduced fO2 conditions (log ΔFMQ ~ −1) between ~1100 and ~800°C. Phase equilibria in various foid syenites indicate that silica activities decrease from 0·6-0·3 at ~1000°C to <0·3 at ~550°C. Release of an aqueous fluid during the transition to the hydrothermal stage caused aSiO2 to drop to very low values, which results from reduced SiO2 solubilities in aqueous fluids compared with silicate melts. During the hydrothermal stage, high water activities stabilized zeolite-group minerals. Fluid inclusions record a complex post-magmatic history, which includes trapping of an aqueous fluid that unmixed from the restitic foid syenitic magma. Cogenetic aqueous and carbonic fluid inclusions reflect heterogeneous trapping of coexisting immiscible external fluids in the latest evolutionary stage. The O and C isotope characteristics of fluid-inclusion hosted CO2 and late-stage carbonates imply that the surrounding limestones were the source of the external fluids. The mineral-rich syenitic rocks at Mont Saint-Hilaire evolved as follows: first, alkalis, high field strength and large ion lithophile elements were pre-enriched in the (late) magmatic and subsequent hydrothermal stages; second, percolation of external fluids in equilibrium with the carbonate host-rocks and mixing processes with internal fluids as well as fluid-rock interaction governed dissolution of pre-existing minerals, element transport and precipitation of mineral assemblages determined by locally variable parameters. It is this hydrothermal interplay between internal and external fluids that is responsible for the mineral wealth found at Mont Saint-Hilair

    New Biotite and Muscovite Isotopic Reference Materials, USGS57 and USGS58, for δ2H Measurements–A Replacement for NBS 30

    Get PDF
    The advent of continuous-flow isotope-ratio mass spectrometry (CF-IRMS) coupled with a high temperature conversion (HTC) system enabled faster, more cost effective, and more precise δ2H analysis of hydrogen-bearing solids. Accurate hydrogen isotopic analysis by on-line or off-line techniques requires appropriate isotopic reference materials (RMs). A strategy of two-point calibrations spanning δ2H range of the unknowns using two RMs is recommended. Unfortunately, the supply of the previously widely used isotopic RM, NBS 30 biotite, is exhausted. In addition, recent measurements have shown that the determination of δ2H values of NBS 30 biotite on the VSMOW-SLAP isotope-delta scale by on-line HTC systems with CF-IRMS may be unreliable because hydrogen in this biotite may not be converted quantitatively to molecular hydrogen. The δ2HVSMOW-SLAP values of NBS 30 biotite analyzed by on-line HTC systems can be as much as 21 mUr (or ‰) too positive compared to the accepted value of −65.7 mUr, determined by only a few conventional off-line measurements. To ensure accurate and traceable on-line hydrogen isotope-ratio determinations in mineral samples, we here propose two isotopically homogeneous, hydrous mineral RMs with well-characterized isotope-ratio values, which are urgently needed. The U.S. Geological Survey (USGS) has prepared two such RMs, USGS57 biotite and USGS58 muscovite. The δ2H values were determined by both glassy carbon-based on-line conversion and chromium-based on-line conversion, and results were confirmed by off-line conversion. The quantitative conversion of hydrogen from the two RMs using the on-line HTC method was carefully evaluated in this study. The isotopic compositions of these new RMs with 1-σ uncertainties and mass fractions of hydrogen are: USGS57 (biotite) δ2HVSMOW-SLAP = −91.5 ± 2.4 mUr (n =24) Mass fraction hydrogen = 0.416 ± 0.002% (n=4) Mass fraction water = 3.74 ± 0.02% (n=4) USGS58 (muscovite) δ2HVSMOW-SLAP = −28.4 ± 1.6 mUr (n =24) Mass fraction hydrogen = 0.448 ± 0.002% (n=4) Mass fraction water = 4.03 ± 0.02% (n =4). These δ2HVSMOW-SLAP values encompass typical ranges for solid unknowns of crustal and mantle origin and are available to users for recommended two-point calibration

    MPI-Ding reference glasses for in situ microanalysis: New reference values for element concentrations and isotope ratios

    Get PDF
    We present new analytical data of major and trace elements for the geological MPI-DING glasses KL2-G, ML3B-G, StHs6/80-G, GOR128-G, GOR132-G, BM90/21-G, T1-G, and ATHO-G. Different analytical methods were used to obtain a large spectrum of major and trace element data, in particular, EPMA, SIMS, LA-ICPMS, and isotope dilution by TIMS and ICPMS. Altogether, more than 60 qualified geochemical laboratories worldwide contributed to the analyses, allowing us to present new reference and information values and their uncertainties (at 95% confidence level) for up to 74 elements. We complied with the recommendations for the certification of geological reference materials by the International Association of Geoanalysts (IAG). The reference values were derived from the results of 16 independent techniques, including definitive (isotope dilution) and comparative bulk (e.g., INAA, ICPMS, SSMS) and microanalytical (e.g., LA-ICPMS, SIMS, EPMA) methods. Agreement between two or more independent methods and the use of definitive methods provided traceability to the fullest extent possible. We also present new and recently published data for the isotopic compositions of H, B, Li, O, Ca, Sr, Nd, Hf, and Pb. The results were mainly obtained by high-precision bulk techniques, such as TIMS and MC-ICPMS. In addition, LA-ICPMS and SIMS isotope data of B, Li, and Pb are presented

    Migration of sharks into freshwater systems during the Miocene and implications for Alpine paleoelevation.

    No full text
    Trace-element and isotopic compositions of fossilized shark teeth sampled from Miocene marine sediments of the north Alpine Molasse Basin, the Vienna Basin, and the Pannonian Basin generally show evidence of formation in a marine environment under conditions geochemically equivalent to the open ocean. In contrast, two of eight shark teeth from the Swiss Upper Marine Molasse locality of La Molière have extremely low ?18O values (10.3‰ and 11.3‰) and low 87Sr/86Sr ratios (0.707840 and 0.707812) compared to other teeth from this locality (21.1‰–22.4‰ and 0.708421–0.708630). The rare earth element (REE) abundances and patterns from La Molière not only differ between dentine and enameloid of the same tooth, but also between different teeth, supporting variable conditions of diagenesis at this site. However, the REE patterns of enameloid from the “exotic” teeth analyzed for O and Sr isotopic compositions are similar to those of teeth that have O and Sr isotopic compositions typical of a marine setting at this site. Collectively, this suggests that the two “exotic” teeth were formed while the sharks frequented a freshwater environment with very low 18O-content and Sr isotopic composition controlled by Mesozoic calcareous rocks. This is consistent with a paleogeography of high-elevation (2300 m) Miocene Alps adjacent to a marginal sea.<br/
    corecore