17 research outputs found

    Lake salinization drives consistent losses of zooplankton abundance and diversity across coordinated mesocosm experiments

    Get PDF
    Human-induced salinization increasingly threatens inland waters; yet we know little about the multifaceted response of lake communities to salt contamination. By conducting a coordinated mesocosm experiment of lake salinization across 16 sites in North America and Europe, we quantified the response of zooplankton abundance and (taxonomic and functional) community structure to a broad gradient of environmentally relevant chloride concentrations, ranging from 4 to ca. 1400 mg Cl- L-1. We found that crustaceans were distinctly more sensitive to elevated chloride than rotifers; yet, rotifers did not show compensatory abundance increases in response to crustacean declines. For crustaceans, our among-site comparisons indicate: (1) highly consistent decreases in abundance and taxon richness with salinity; (2) widespread chloride sensitivity across major taxonomic groups (Cladocera, Cyclopoida, and Calanoida); and (3) weaker loss of functional than taxonomic diversity. Overall, our study demonstrates that aggregate properties of zooplankton communities can be adversely affected at chloride concentrations relevant to anthropogenic salinization in lakes.Peer reviewe

    Current water quality guidelines across North America and Europe do not protect lakes from salinization

    Get PDF
    Human-induced salinization caused by the use of road deicing salts, agricultural practices, mining operations, and climate change is a major threat to the biodiversity and functioning of freshwater ecosystems. Yet, it is unclear if freshwater ecosystems are protected from salinization by current water quality guidelines. Leveraging an experimental network of land-based and in-lake mesocosms across North America and Europe, we tested how salinization-indicated as elevated chloride (C-) concentration-will affect lake food webs and if two of the lowest Cl- thresholds found globally are sufficient to protect these food webs. Our results indicated that salinization will cause substantial zooplankton mortality at the lowest Cl- thresholds established in Canada (120 mg Cl-/L) and the United States (230 mg Cl-/L) and throughout Europe where Cl- thresholds are generally higher. For instance, at 73% of our study sites, Cl- concentrations that caused a >= 50% reduction in cladoceran abundance were at or below Cl thresholds in Canada, in the United States, and throughout Europe. Similar trends occurred for copepod and rotifer zooplankton. The loss of zooplankton triggered a cascading effect causing an increase in phytoplankton biomass at 47% of study sites. Such changes in lake food webs could alter nutrient cycling and water clarity and trigger declines in fish production. Current Cl- thresholds across North America and Europe clearly do not adequately protect lake food webs. Water quality guidelines should be developed where they do not exist, and there is an urgent need to reassess existing guidelines to protect lake ecosystems from human-induced salinization.Peer reviewe

    Widespread variation in salt tolerance within freshwater zooplankton species reduces the predictability of community-level salt tolerance

    Get PDF
    The salinization of freshwaters is a global threat to aquatic biodiversity. We quantified variation in chloride (Cl-) tolerance of 19 freshwater zooplankton species in four countries to answer three questions: (1) How much variation in Cl- tolerance is present among populations? (2) What factors predict intraspecific variation in Cl- tolerance? (3) Must we account for intraspecific variation to accurately predict community Cl- tolerance? We conducted field mesocosm experiments at 16 sites and compiled acute LC(50)s from published laboratory studies. We found high variation in LC(50)s for Cl- tolerance in multiple species, which, in the experiment, was only explained by zooplankton community composition. Variation in species-LC50 was high enough that at 45% of lakes, community response was not predictable based on species tolerances measured at other sites. This suggests that water quality guidelines should be based on multiple populations and communities to account for large intraspecific variation in Cl- tolerance.Peer reviewe

    Experimental assessment of salinization effects on freshwater zooplankton communities and their trophic interactions under eutrophic conditions

    No full text
    Freshwater ecosystems are becoming saltier due to human activities. The effects of increased salinity can lead to cascading trophic interactions, affecting ecosystem functioning and energy transfer, through changes in community and size structure. These effects can be modulated by other environmental factors, such as nutrients. For example, communities developed under eutrophic conditions could be less sensitive to salinization due to cross-tolerance mechanisms. In this study, we used a mesocosm approach to assess the effects of a salinization gradient on the zooplankton community composition and size structure under eutrophic conditions and the cascading effects on algal communities. Our results showed that zooplankton biomass, size diversity and mean body size decreased with increased chloride concentration induced by salt addition. This change in the zooplankton community did not have cascading effects on phytoplankton. The phytoplankton biomass decreased after the chloride concentration threshold of 500 mg L-1 was reached, most likely due to direct toxic effects on the osmotic regulation and nutrient uptake processes of certain algae rather than as a response to community turnover or top-down control. Our study can help to put in place mitigation strategies for salinization and eutrophication, which often co-occur in freshwater ecosystems.This study is part of the Global Lakes Ecological Observatory Network (GLEON), Global Salt Initiative. We thank FEHM and CT-BETA for allowing us to use their research facilities. LP has received funding from the Beatriu de Pinós Postdoctoral Fellowships Programme, funded by the Secretary of Universities and Research (Government of Catalonia) and by the Horizon 2020 Programme of Research and Innovation of the European Union under the Marie SkƂodowska-Curie Grant Agreement No. 801370 and by a Ramón y Cajal contract funded by the Spanish Ministry of Science and Innovation (RYC 2020-029829-I). MCA was supported by the Serra-Hunter programme funded by the Generalitat of Catalunya and by a Ramón y Cajal contract funded by the Spanish Ministry of Science and Innovation (RYC 2020-029829-I). We also thank three anonymous reviewers for their constructive comments and suggestionsPeer reviewe

    Hypersaline mining effluents affect the structure and function of stream biofilm

    No full text
    The salinisation of freshwater ecosystems is a global environmental problem that threatens biodiversity, ecosystem functioning and human welfare. The aim of this study was to investigate the potential impact of a realistic salinity gradient on the structure and functioning of freshwater biofilms. The salinity gradient was based on the real ion concentration of a mining effluent from an abandoned mine in Germany. We exposed biofilm from a pristine stream to 5 increasing salinities (3 to 100 g L-1) under controlled conditions in artificial streams for 21 days. We evaluated its functional (photosynthetic efficiency, nutrient uptake, and microbial respiration) and structural responses (community composition, algal biomass and diatom, cyanobacteria and green algae metrics) over time. Then we compared their responses with an unexposed biofilm used as control. The functionality and structure of the biofilm exposed to the different salinities significantly decreased after short-term and long-term exposure, respectively. The community composition shifted to a new stable state where the most tolerant species increased their abundances. At the same time, we observed an increase in the community tolerance (measured as Pollution-Induced Community Tolerance) along the salinity gradient. This study provides relevant information on the salt threshold concentrations that can substantially damage algal cells (i.e., between 15 and 30 g L-1). The results provide new insights regarding the response and adaptation of stream biofilm to salinity and its potential implications at the ecosystem level.We thank T.S and A.S from the Dresden Groundwater Research Center for the information about Menteroda abandoned mine provided. Lorenzo Proia that has received funding from the Postdoctoral Fellowships Programme Beatriu de Pinos, funded by the Secretary of Universities and Research (Government of Catalonia) and by the Horizon 2020 Programme of Research and Innovation of the European Union under the Marie SkƂodowska-Curie Grant Agreement No. 801370 and by a RamĂłn y Cajal contract funded by the Spanish Ministry of Science and Innovation (RYC2020-029829-I). Miguel Cañedo-ArgĂŒelles was supported by the Serra-Hunter programme funded by the Generalitat of Catalunya and by a RamĂłn y Cajal contract funded by the Spanish Ministry of Science and Innovation (RYC2020-029829-I).Peer reviewe

    Impacts of diffuse urban stressors on stream benthic communities and ecosystem functioning: A review

    Get PDF
    Catchment urbanisation results in urban streams being exposed to a multitude of stressors. Notably, stressors originating from diffuse sources have received less attention than stressors originating from point sources. Here, advances related to diffuse urban stressors and their consequences for stream benthic communities are summarised by reviewing 92 articles. Based on the search criteria, the number of articles dealing with diffuse urban stressors in streams has been increasing, and most of them focused on North America, Europe, and China. Land use was the most common measure used to characterize diffuse stressor sources in urban streams (70.7 % of the articles characterised land use), and chemical stressors (inorganic nutrients, xenobiotics, metals, and water properties, including pH and conductivity) were more frequently reported than physical or biological stressors. A total of 53.3 % of the articles addressed the impact of urban stressors on macroinvertebrates, while 35.9 % focused on bacteria, 9.8 % on fungi, and 8.7 % on algae. Regarding ecosystem functions, almost half of the articles (43.5 %) addressed changes in community dynamics, 40.3 % addressed organic matter decomposition, and 33.9 % addressed nutrient cycling. When comparing urban and non-urban streams, the reviewed studies suggest that urbanisation negatively impacts the diversity of benthic organisms, leading to shifts in community composition. These changes imply functional degradation of streams. The results of the present review summarise the knowledge gained to date and identify its main gaps to help improve our understanding of urban streams.This study has received funding from the Iberian Association of Limnology (AIL) through the project URBIFUN (Urbanization effects on the relationship between microbial biodiversity and ecosystem functioning), awarded to Míriam Colls and Ferran Romero. Authors thank as well the Basque Government (Consolidated Research Group IT951-16) and the MERLIN project 101036337 – H2020-LC-GD-2020/H2020-LC-GD-2020-3.info:eu-repo/semantics/publishedVersio

    Lake salinization drives consistent losses of zooplankton abundance and diversity across coordinated mesocosm experiments

    No full text
    Human-induced salinization increasingly threatens inland waters; yet we know little about the multifaceted response of lake communities to salt contamination. By conducting a coordinated mesocosm experiment of lake salinization across 16 sites in North America and Europe, we quantified the response of zooplankton abundance and (taxonomic and functional) community structure to a broad gradient of environmentally relevant chloride concentrations, ranging from 4 to ca. 1400 mg Cl- L-1. We found that crustaceans were distinctly more sensitive to elevated chloride than rotifers; yet, rotifers did not show compensatory abundance increases in response to crustacean declines. For crustaceans, our among-site comparisons indicate: (1) highly consistent decreases in abundance and taxon richness with salinity; (2) widespread chloride sensitivity across major taxonomic groups (Cladocera, Cyclopoida, and Calanoida); and (3) weaker loss of functional than taxonomic diversity. Overall, our study demonstrates that aggregate properties of zooplankton communities can be adversely affected at chloride concentrations relevant to anthropogenic salinization in lakes

    Lake salinization drives consistent losses of zooplankton abundance and diversity across coordinated mesocosm experiments

    No full text
    Abstract Human‐induced salinization increasingly threatens inland waters; yet we know little about the multifaceted response of lake communities to salt contamination. By conducting a coordinated mesocosm experiment of lake salinization across 16 sites in North America and Europe, we quantified the response of zooplankton abundance and (taxonomic and functional) community structure to a broad gradient of environmentally relevant chloride concentrations, ranging from 4 to ca. 1400 mg Cl− L−1. We found that crustaceans were distinctly more sensitive to elevated chloride than rotifers; yet, rotifers did not show compensatory abundance increases in response to crustacean declines. For crustaceans, our among‐site comparisons indicate: (1) highly consistent decreases in abundance and taxon richness with salinity; (2) widespread chloride sensitivity across major taxonomic groups (Cladocera, Cyclopoida, and Calanoida); and (3) weaker loss of functional than taxonomic diversity. Overall, our study demonstrates that aggregate properties of zooplankton communities can be adversely affected at chloride concentrations relevant to anthropogenic salinization in lakes
    corecore