49 research outputs found

    Alectorioid morphologies in Paleogene lichens : New evidence and re-evaluation of the fossil Alectoria succini Mägdefrau

    Get PDF
    One of the most important issues in molecular dating studies concerns the incorporation of reliable fossil taxa into the phylogenies reconstructed from DNA sequence variation in extant taxa. Lichens are symbiotic associations between fungi and algae and/or cyanobacteria. Several lichen fossils have been used as minimum age constraints in recent studies concerning the diversification of the Ascomycota. Recent evolutionary studies of Lecanoromycetes, an almost exclusively lichen-forming class in the Ascomycota, have utilized the Eocene amber inclusion Alectoria succinic as a minimum age constraint. However, a re-investigation of the type material revealed that this inclusion in fact represents poorly preserved plant remains, most probably of a root. Consequently, this fossil cannot be used as evidence of the presence of the genus Alectoria (Parmeliaceae, Lecanorales) or any other lichens in the Paleogene. However, newly discovered inclusions from Paleogene Baltic and Bitterfeld amber verify that alectorioid morphologies in lichens were in existence by the Paleogene. The new fossils represent either a lineage within the alectorioid group or belong to the genus Oropogon.Peer reviewe

    Transoceanic Dispersal and Subsequent Diversification on Separate Continents Shaped Diversity of the Xanthoparmelia pulla Group (Ascomycota)

    Get PDF
    In traditional morphology-based concepts many species of lichenized fungi have world-wide distributions. Molecular data have revolutionized the species delimitation in lichens and have demonstrated that we underestimated the diversity of these organisms. The aim of this study is to explore the phylogeography and the evolutionary patterns of the Xanthoparmelia pulla group, a widespread group of one of largest genera of macrolichens. We used a dated phylogeny based on nuITS and nuLSU rDNA sequences and performed an ancestral range reconstruction to understand the processes and explain their current distribution, dating the divergence of the major lineages in the group. An inferred age of radiation of parmelioid lichens and the age of a Parmelia fossil were used as the calibration points for the phylogeny. The results show that many species of the X. pulla group as currently delimited are polyphyletic and five major lineages correlate with their geographical distribution and the biosynthetic pathways of secondary metabolites. South Africa is the area where the X. pulla group radiated during the Miocene times, and currently is the region with the highest genetic, morphological and chemical diversity. From this center of radiation the different lineages migrated by long-distance dispersal to others areas, where secondary radiations developed. The ancestral range reconstruction also detected that a secondary lineage migrated from Australia to South America via long-distance dispersal and subsequent continental radiation

    Quantitative Trait Loci Affecting Milk Production Traits in Finnish Ayrshire Dairy Cattle

    Get PDF
    A whole genome scan of Finnish Ayrshire was conducted tomap quantitative trait loci (QTL) affecting milk production. The analysis included 12 half-sib families containing a total of 494 bulls in a granddaughter design. The families were genotyped with 150 markers to construct a 2764 cM (Haldane) male linkage map. In this study interval mapping with multiple-marker regression approach was extended to analyse multiple chromosomes simultaneously. The method uses identified QTL on other chromosomes as cofactors to increase mapping power. The existence of multiple QTL on the same linkage group was also analyzed by fitting a two-QTL model to the analysis. Empirical values for chromosome-wise significance thresholds were determined using a permutation test. Two genome-wise significant QTL were identified when chromosomes were analyzed individually, one affecting fat percentage on chromosome (BTA) 14 and another affecting fat yield on BTA12. The cofactor analysis revealed in total 31 genome-wise significant QTL. The result of two-QTL analysis suggests the existence of two QTL for fat percentage on BTA3. In general, most of the identified QTL confirm results from previous studies of Holstein-Friesian cattle. A new QTL for all yield components was identified on BTA12 in Finnish Ayrshire
    corecore