1,074 research outputs found

    Thermal resistances of solder-boss/potting compound combinations

    Get PDF
    Formulas, which can be used as a design tool, are derived to calculate the thermal resistance of solder-boss/potting compound combinations, for different depths of a solder boss, in electronic cordwood modules. Since the solder boss is the heat source, its shape and position will affect the thermal resistance of the surrounding potting compound

    Spectral classification of emission-line galaxies

    Get PDF
    A revised method of classification of narrow line active galaxies and H II region-like galaxies is proposed. It involves the line ratios (O III) lambda 5007/H beta, (N II) lambda 6583/H alpha, (S II) (lambda lambda 6716 = 6731)/H alpha, and (O I) lambda 6300/H alpha. These line ratios take full advantage of the physical distinction between the two types of objects and minimize the effects of reddening correction and errors in the flux calibration. Large sets of internally consistent data are used including new previously unpublished measurements. Prediction of recent photoionization models by power law spectra and by hot stars are compared with the observations. The classification is based on the observational data interpreted on the basis of these models

    Half-Megasecond Chandra Spectral Imaging of the Hot Circumgalactic Nebula around Quasar Mrk 231

    Full text link
    A deep 400-ksec ACIS-S observation of the nearest quasar known, Mrk 231, is combined with archival 120-ksec data obtained with the same instrument and setup to carry out the first ever spatially resolved spectral analysis of a hot X-ray emitting circumgalactic nebula around a quasar. The 65 x 50 kpc X-ray nebula shares no resemblance with the tidal debris seen at optical wavelengths. One notable exception is the small tidal arc 3.5 kpc south of the nucleus where excess soft X-ray continuum emission and Si XIII 1.8 keV line emission are detected, consistent with star formation and its associated alpha-element enhancement, respectively. An X-ray shadow is also detected at the location of the 15-kpc northern tidal tail. The hard X-ray continuum emission within 6 kpc of the center is consistent with being due entirely to the bright central AGN. The soft X-ray spectrum of the outer (>6 kpc) portion of the nebula is best described as the sum of two thermal components with T~3 and ~8 million K and spatially uniform super-solar alpha element abundances, relative to iron. This result implies enhanced star formation activity over ~10^8 yrs accompanied with redistribution of the metals on large scale. The low-temperature thermal component is not present within 6 kpc of the nucleus, suggesting extra heating in this region from the circumnuclear starburst, the central quasar, or the wide-angle quasar-driven outflow identified from optical IFU spectroscopy on a scale of >3 kpc. Significant azimuthal variations in the soft X-ray intensity are detected in the inner region where the outflow is present. The soft X-ray emission is weaker in the western quadrant, coincident with a deficit of Halpha and some of the largest columns of neutral gas outflowing from the nucleus. Shocks created by the interaction of the wind with the ambient ISM may heat the gas to high temperatures at this location. (abridged)Comment: 43 pages, 11 figures, accepted for publication in the Astrophysical Journa

    Impulsive Motion in a Cylindrical Fluid-Filled Tube Terminated by a Converging Section

    Get PDF
    The syringe in a subcutaneous auto-injector may be subjected to internal pressure transients due to the normal operation of the injection mechanism. These transients are similar to transients in fluid-filled pipelines observed during water hammer events. In this paper, the effect of an air gap in the syringe and a converging section is studied experimentally and numerically in a model system which consists of a fluid-filled metal tube that is impulsively loaded with a projectile to simulate the action of the auto-injector mechanism operation. The air between the buffer and the water results in a complex interaction between the projectile and the buffer. Also, there are tension waves inside the tube due to the presence of a free surface and the motion of the buffer, and this causes distributed cavitation which, in turn, gives rise to steepening of the pressure waves. The converging section can amplify the pressure waves if the wave front is sharp, and it can enhance the collapse of bubbles. Pressures as high as 50 MPa have been measured at the apex of the cone with impact velocities of 5.5 m/s

    Searching for molecular outflows in Hyper-Luminous Infrared Galaxies

    Full text link
    We present constraints on the molecular outflows in a sample of five Hyper-Luminous Infrared Galaxies using Herschel observations of the OH doublet at 119 {\mu}m. We have detected the OH doublet in three cases: one purely in emission and two purely in absorption. The observed emission profile has a significant blueshifted wing suggesting the possibility of tracing an outflow. Out of the two absorption profiles, one seems to be consistent with the systemic velocity while the other clearly indicates the presence of a molecular outflow whose maximum velocity is about ~1500 km/s. Our analysis shows that this system is in general agreement with previous results on Ultra-luminous Infrared Galaxies and QSOs, whose outflow velocities do not seem to correlate with stellar masses or starburst luminosities (star formation rates). Instead the galaxy outflow likely arises from an embedded AGN.Comment: Accepted for publication in MNRAS. 13 pages, 11 figures, 4 table

    Quasar Feedback in the Ultraluminous Infrared Galaxy F11119+3257: Connecting the Accretion Disk Wind with the Large-Scale Molecular Outflow

    Full text link
    In Tombesi et al. (2015), we reported the first direct evidence for a quasar accretion disk wind driving a massive molecular outflow. The target was F11119+3257, an ultraluminous infrared galaxy (ULIRG) with unambiguous type-1 quasar optical broad emission lines. The energetics of the accretion disk wind and molecular outflow were found to be consistent with the predictions of quasar feedback models where the molecular outflow is driven by a hot energy-conserving bubble inflated by the inner quasar accretion disk wind. However, this conclusion was uncertain because the energetics were estimated from the optically thick OH 119 um transition profile observed with Herschel. Here, we independently confirm the presence of the molecular outflow in F11119+3257, based on the detection of broad wings in the CO(1-0) profile derived from ALMA observations. The broad CO(1-0) line emission appears to be spatially extended on a scale of at least ~7 kpc from the center. Mass outflow rate, momentum flux, and mechanical power of (80-200) R_7^{-1} M_sun/yr, (1.5-3.0) R_7^{-1} L_AGN/c, and (0.15-0.40)% R_7^{-1} L_AGN are inferred from these data, assuming a CO-to-H_2 conversion factor appropriate for a ULIRG (R_7 is the radius of the outflow normalized to 7 kpc and L_AGN is the AGN luminosity). These rates are time-averaged over a flow time scale of 7x10^6 yrs. They are similar to the OH-based rates time-averaged over a flow time scale of 4x10^5 yrs, but about a factor 4 smaller than the local ("instantaneous"; <10^5 yrs) OH-based estimates cited in Tombesi et al. The implications of these new results are discussed in the context of time-variable quasar-mode feedback and galaxy evolution. The need for an energy-conserving bubble to explain the molecular outflow is also re-examined.Comment: 15 pages, 6 figures, 4 tables, accepted for publication in Ap

    A Deep HST H-Band Imaging Survey of Massive Gas-Rich Mergers. II. The QUEST PG QSOs

    Full text link
    We report the results from a deep HST NICMOS H-band imaging survey of 28 z < 0.3 QSOs from the Palomar-Green (PG) sample. This program is part of QUEST (Quasar / ULIRG Evolution STudy) and complements a similar set of data on 26 highly-nucleated ULIRGs presented in Paper I. Our analysis indicates that the fraction of QSOs with elliptical hosts is higher among QSOs with undetected far-infrared (FIR) emission, small infrared excess, and luminous hosts. The hosts of FIR-faint QSOs show a tendency to have less pronounced merger-induced morphological anomalies and larger QSO-to-host luminosity ratios on average than the hosts of FIR-bright QSOs, consistent with late-merger evolution from FIR-bright to FIR-faint QSOs. The spheroid sizes and total host luminosities of the radio-quiet PG QSOs in our sample are statistically indistinguishable from the ULIRG hosts presented in Paper I, while those of radio-loud PG QSOs are systematically larger and more luminous. ULIRGs and PG QSOs with elliptical hosts fall near, but not exactly on, the fundamental plane of inactive spheroids. We confirm the systematic trend noted in Paper I for objects with small (< 2 kpc) spheroids to be up to ~1 mag. brighter than inactive spheroids. The host colors and wavelength dependence of their sizes support the idea that these deviations are due at least in part to non-nuclear star formation. However, the amplitudes of these deviations does not depend on host R-H colors. Taken at face value (i.e., no correction for extinction or the presence of a young stellar population), the H-band spheroid-host luminosities imply BH masses ~5 -- 200 x 10^7 M_sun and sub-Eddington mass accretion rates for both QSOs and ULIRGs. These results are compared with published BH mass estimates derived from other methods. (abridged)Comment: Accepted for publication in the Astrophysical Journal, Vol. 701, August 20 issue. Paper with high-resolution figures can be downloaded at http://www.astro.umd.edu/~veilleux/pubs/nicmos2.pd

    Local Swift-BAT active galactic nuclei prefer circumnuclear star formation

    Full text link
    We use Herschel data to analyze the size of the far-infrared 70micron emission for z<0.06 local samples of 277 hosts of Swift-BAT selected active galactic nuclei (AGN), and 515 comparison galaxies that are not detected by BAT. For modest far-infrared luminosities 8.5<log(LFIR)<10.5, we find large scatter of half light radii Re70 for both populations, but a typical Re70 <~ 1 kpc for the BAT hosts that is only half that of comparison galaxies of same far-infrared luminosity. The result mostly reflects a more compact distribution of star formation (and hence gas) in the AGN hosts, but compact AGN heated dust may contribute in some extremely AGN-dominated systems. Our findings are in support of an AGN-host coevolution where accretion onto the central black hole and star formation are fed from the same gas reservoir, with more efficient black hole feeding if that reservoir is more concentrated. The significant scatter in the far-infrared sizes emphasizes that we are mostly probing spatial scales much larger than those of actual accretion, and that rapid accretion variations can smear the distinction between the AGN and comparison categories. Large samples are hence needed to detect structural differences that favour feeding of the black hole. No size difference AGN host vs. comparison galaxies is observed at higher far-infrared luminosities log(LFIR)>10.5 (star formation rates >~ 6 Msun/yr), possibly because these are typically reached in more compact regions in the first place.Comment: 7 pages, 3 figures, accepted for publication in Astronomy & Astrophysic

    Exploring the active galactic nucleus and starburst content of local ultraluminous infrared galaxies through 5-8 micron spectroscopy

    Full text link
    We present a 5-8 micron analysis of the Spitzer-IRS spectra of 71 ultraluminous infrared galaxies (ULIRGs) with redshift z < 0.15, devoted to the study of the role of active galactic nuclei (AGN) and starbursts (SB) as the power source of the extreme infrared emission. Around 5 micron an AGN is much brighter (by a factor 30) than a starburst of equal bolometric luminosity. This allows us to detect the presence of even faint accretion-driven cores inside ULIRGs: signatures of AGN activity are found in 70 per cent of our sample (50/71 sources). Through a simple analytical model we are also able to obtain a quantitative estimate of the AGN/SB contribution to the overall energy output of each source. Although the main fraction of ULIRG luminosity is confirmed to arise from star formation events, the AGN contribution is non-negligible (23 per cent) and is shown to increase with luminosity. The existence of a rather heterogeneous pattern in the composition and geometrical structure of the dust among ULIRGs is newly supported by the comparison between individual absorption features and continuum extinction.Comment: 56 pages, 13 figures, 4 tables. Accepted for publication in MNRA

    Follow-Up Near-infrared Spectroscopy of Ultraluminous Infrared Galaxies observed by ISO

    Full text link
    We present low resolution near-infrared spectroscopy of an unbiased sample of 24 ultraluminous infrared galaxies (ULIRGs), selected from samples previously observed spectroscopically in the mid-infrared with the Infrared Space Observatory (ISO). Qualitatively, the near-infrared spectra resemble those of starbursts. Only in one ULIRG, IRAS 04114-5117E, do we find spectroscopic evidence for AGN activity. The spectroscopic classification in the near-infrared is in very good agreement with the mid-infrared one. For a subset of our sample for which extinction corrections can be derived from Pa-alpha and Br-gamma, we find rather high Pa-alpha luminosities, in accordance with the powering source of these galaxies being star formation.[Fe] emission is strong in ULIRGs and may be linked to starburst and superwind activity. Additionally, our sample includes two unusual objects. The first, IRAS F00183-7111, exhibits extreme [Fe] emission and the second, IRAS F23578-5307, is according to our knowledge one of the most luminous infrared galaxies in H2 rotation-vibration emission.Comment: Accepted for publication in A&A (12 pages, 4 figures). See http://www.mpia-hd.mpg.de/homes/dannerb/ for a version with higher quality figure
    • …
    corecore