254 research outputs found

    Statistics of mass substructure from strong gravitational lensing: quantifying the mass fraction and mass function

    Get PDF
    A Bayesian statistical formalism is developed to quantify the level at which the mass function slope (alpha) and the projected cumulative mass fraction (f) of (CDM) substructure in strong gravitational-lens galaxies, with arcs or Einstein rings, can be recovered as function of the lens-survey parameters and the detection threshold of the substructure mass. The method is applied to different sets of mock data to explore a range of observational limits: (i) the number of lens galaxies in the survey, (ii) the mass threshold, Mlow, for the detection of substructures and (iii) the uncertainty of the measured substructure masses. We explore two different priors on the mass function slope: a uniform prior and a Gaussian prior with alpha = 1.90+-0.1. With a substructure detection threshold Mlow=3x10^8 Msun, the number of lenses available now (n_l=30), a true dark-matter mass fraction in (CDM) substructure <=1.0% and a prior of alpha = 1.90+-0.1, we find that the upper limit of f can be constrained down to a level <=1.0% (95% CL). In the case of a Gaussian prior on alpha, it is always possible to set stringent constraints on both parameters. We also find that lowering the detection threshold has the largest impact on the ability to recover alpha, because of the (expected) steep mass-function slope. In the future, thanks to new surveys with telescopes, such as SKA, LSST and JDEM and follow-up telescopes with high-fidelity data, a significant increase in the number of known lenses will allow us to recover the satellite population in its completeness. For example, a sample of 200 lenses, equivalent in data-quality to the Sloan Lens ACS Survey and a detection threshold of 10^8 Msun, allows one to determine f=0.5+-0.1% (68% CL) and alpha=1.90+-0.2 (68% CL).Comment: MNRAS (in press

    Semi-Automated Ontology Generation Process from Industrial Product Data Standards

    Get PDF
    Ontology development has become an important research area for manufacture industries. Ontologies are one of the most popular methods to achieve semantic interoperability between information systems. In previous works, an ontology network that reuses ontological and non-ontological re-sources have been proposed in order to reach semantic interoperability. Howev-er, processing non-ontological resources to build an ontology is a great time-consuming task. Therefore, this work presents a framework and a prototype tool to support the reuse of the non-ontological resources involved in the develop-ment of the ontology network.Sociedad Argentina de Informática e Investigación Operativa (SADIO

    Semi-Automated Ontology Generation Process from Industrial Product Data Standards

    Get PDF
    Ontology development has become an important research area for manufacture industries. Ontologies are one of the most popular methods to achieve semantic interoperability between information systems. In previous works, an ontology network that reuses ontological and non-ontological re-sources have been proposed in order to reach semantic interoperability. Howev-er, processing non-ontological resources to build an ontology is a great time-consuming task. Therefore, this work presents a framework and a prototype tool to support the reuse of the non-ontological resources involved in the develop-ment of the ontology network.Sociedad Argentina de Informática e Investigación Operativa (SADIO

    SHARP - I. A high-resolution multi-band view of the infra-red Einstein ring of JVAS B1938+666

    Get PDF
    We present new mass models for the gravitational lens system B1938+666, using multi-wavelength data acquired from Keck adaptive optics (AO) and Hubble Space Telescope (HST) observations. These models are the first results from the Strong-lensing at High Angular Resolution Program (SHARP), a project designed to study known quadruple-image and Einstein ring lenses using high-resolution imaging, in order to probe their mass distributions in unprecedented detail. Here, we specifically highlight differences between AO- and HST-derived lens models, finding that -- at least when the lens and source galaxies are both bright and red, and the system has a high degree of circular symmetry -- AO-derived models place significantly tighter constraints on model parameters. Using this improved precision, we infer important physical properties about the B1938+666 system, including the mass density slope of the lensing galaxy (gamma = 2.045), the projected dark matter mass fraction within the Einstein radius (M_dark/M_lens = 0.55), and the total magnification factor of the source galaxy (~ 13). Additionally, we measure an upper-limit constraint on luminous substructure (M_V > 16.2), based on the non-detection of bright satellite galaxies in all data sets. Finally, we utilize the improved image resolution of the AO data to reveal the presence of faint arcs outside of the primary Einstein ring. The positions and orientations of these arcs raise the intriguing possibility that B1938+666 has a second source galaxy, located at a more distant redshift. However, future work is needed to verify this hypothesis.Comment: 12 pages, 7 figures; Accepted for publication in MNRA

    Inference of the Cold Dark Matter substructure mass function at z=0.2 using strong gravitational lenses

    Get PDF
    We present the results of a search for galaxy substructures in a sample of 11 gravitational lens galaxies from the Sloan Lens ACS Survey. We find no significant detection of mass clumps, except for a luminous satellite in the system SDSS J0956+5110. We use these non-detections, in combination with a previous detection in the system SDSS J0946+1006, to derive constraints on the substructure mass function in massive early-type host galaxies with an average redshift z ~ 0.2 and an average velocity dispersion of 270 km/s. We perform a Bayesian inference on the substructure mass function, within a median region of about 32 kpc squared around the Einstein radius (~4.2 kpc). We infer a mean projected substructure mass fraction f=0.00760.0052+0.0208f = 0.0076^{+0.0208}_{-0.0052} at the 68 percent confidence level and a substructure mass function slope α\alpha < 2.93 at the 95 percent confidence level for a uniform prior probability density on alpha. For a Gaussian prior based on Cold Dark Matter (CDM) simulations, we infer f=0.00640.0042+0.0080f = 0 .0064^{+0.0080}_{-0.0042} and a slope of α\alpha = 1.900.098+0.098^{+0.098}_{-0.098} at the 68 percent confidence level. Since only one substructure was detected in the full sample, we have little information on the mass function slope, which is therefore poorly constrained (i.e. the Bayes factor shows no positive preference for any of the two models).The inferred fraction is consistent with the expectations from CDM simulations and with inference from flux ratio anomalies at the 68 percent confidence level.Comment: Accepted for publication on MNRAS, some typos corrected and some important references adde

    The X-shooter Lens Survey - II. Sample presentation and spatially resolved kinematics

    Get PDF
    We present the X-shooter Lens Survey (XLENS) data. The main goal of XLENS is to disentangle the stellar and dark matter content of massive early-type galaxies (ETGs), through combined strong gravitational lensing, dynamics and spectroscopic stellar population studies. The sample consists of 11 lens galaxies covering the redshift range from 0.10.1 to 0.450.45 and having stellar velocity dispersions between 250250 and 380kms1380\,\mathrm{km}\,\mathrm{s}^{-1}. All galaxies have multi-band, high-quality HST imaging. We have obtained long-slit spectra of the lens galaxies with X-shooter on the VLT. We are able to disentangle the dark and luminous mass components by combining lensing and extended kinematics data-sets, and we are also able to precisely constrain stellar mass-to-light ratios and infer the value of the low-mass cut-off of the IMF, by adding spectroscopic stellar population information. Our goal is to correlate these IMF parameters with ETG masses and investigate the relation between baryonic and non-baryonic matter during the mass assembly and structure formation processes. In this paper we provide an overview of the survey, highlighting its scientific motivations, main goals and techniques. We present the current sample, briefly describing the data reduction and analysis process, and we present the first results on spatially resolved kinematics.Comment: Accepted for publication in MNRA

    Gravitational detection of a low-mass dark satellite at cosmological distance

    Full text link
    The mass-function of dwarf satellite galaxies that are observed around Local Group galaxies substantially differs from simulations based on cold dark matter: the simulations predict many more dwarf galaxies than are seen. The Local Group, however, may be anomalous in this regard. A massive dark satellite in an early-type lens galaxy at z = 0.222 was recently found using a new method based on gravitational lensing, suggesting that the mass fraction contained in substructure could be higher than is predicted from simulations. The lack of very low mass detections, however, prohibited any constraint on their mass function. Here we report the presence of a 1.9 +/- 0.1 x 10^8 M_sun dark satellite in the Einstein-ring system JVAS B1938+666 at z = 0.881, where M_sun denotes solar mass. This satellite galaxy has a mass similar to the Sagittarius galaxy, which is a satellite of the Milky Way. We determine the logarithmic slope of the mass function for substructure beyond the local Universe to be alpha = 1.1^+0.6_-0.4, with an average mass-fraction of f = 3.3^+3.6_-1.8 %, by combining data on both of these recently discovered galaxies. Our results are consistent with the predictions from cold dark matter simulations at the 95 per cent confidence level, and therefore agree with the view that galaxies formed hierarchically in a Universe composed of cold dark matter.Comment: 25 pages, 7 figures, accepted for publication in Nature (19 January 2012

    The fundamental plane of evolving red nuggets

    Get PDF
    We present an exploration of the mass structure of a sample of 12 strongly lensed massive, compact early-type galaxies at redshifts z0.6z\sim0.6 to provide further possible evidence for their inside-out growth. We obtain new ESI/Keck spectroscopy and infer the kinematics of both lens and source galaxies, and combine these with existing photometry to construct (a) the fundamental plane (FP) of the source galaxies and (b) physical models for their dark and luminous mass structure. We find their FP to be tilted towards the virial plane relative to the local FP, and attribute this to their unusual compactness, which causes their kinematics to be totally dominated by the stellar mass as opposed to their dark matter; that their FP is nevertheless still inconsistent with the virial plane implies that both the stellar and dark structure of early-type galaxies is non-homologous. We also find the intrinsic scatter of their FP to be comparable to the local value, indicating that variations in the stellar mass structure outweight variations in the dark halo in the central regions of early-type galaxies. Finally, we show that inference on the dark halo structure -- and, in turn, the underlying physics -- is sensitive to assumptions about the stellar initial mass function (IMF), but that physically-motivated assumptions about the IMF imply haloes with sub-NFW inner density slopes, and may present further evidence for the inside-out growth of compact early-type galaxies via minor mergers and accretion.Comment: 10 pages, 3 figures, 3 tables; submitted to MNRA

    Dataset of Electoral Volatility in the European Parliament elections since 1979

    Get PDF
    This dataset provides data on electoral volatility and its internal components in the elections for the European Parliament (EP) in all European Union (EU) countries since 1979 or the date of their accession to the Union. It also provides data about electoral volatility for both the class bloc and the demarcation bloc. This dataset will be regularly updated so as to include the next rounds of the European Parliament elections. How to cite this dataset? Emanuele, V., Angelucci, D., Marino, B., Puleo, L., and Vegetti, F. (2019), Dataset of Electoral Volatility in the European Parliament elections since 1979, Rome: Italian Center for Electoral Studies, http://dx.doi.org/10.7802/1905

    Red nuggets grow inside-out: evidence from gravitational lensing

    Get PDF
    We present a new sample of strong gravitational lens systems where both the foreground lenses and background sources are early-type galaxies. Using imaging from HST/ACS and Keck/NIRC2, we model the surface brightness distributions and show that the sources form a distinct population of massive, compact galaxies at redshifts 0.4z0.70.4 \lesssim z \lesssim 0.7, lying systematically below the size-mass relation of the global elliptical galaxy population at those redshifts. These may therefore represent relics of high-redshift red nuggets or their partly-evolved descendants. We exploit the magnifying effect of lensing to investigate the structural properties, stellar masses and stellar populations of these objects with a view to understanding their evolution. We model these objects parametrically and find that they generally require two S\'ersic components to properly describe their light profiles, with one more spheroidal component alongside a more envelope-like component, which is slightly more extended though still compact. This is consistent with the hypothesis of the inside-out growth of these objects via minor mergers. We also find that the sources can be characterised by red-to-blue colour gradients as a function of radius which are stronger at low redshift -- indicative of ongoing accretion -- but that their environments generally appear consistent with that of the general elliptical galaxy population, contrary to recent suggestions that these objects are predominantly associated with clusters.Comment: 21 pages; accepted for publication in MNRA
    corecore