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ABSTRACT
A Bayesian statistical formalism is developed to quantify the level at which the mass function
(dN/dm ∝ m−α) and the projected cumulative mass fraction (f ) of [cold dark matter (CDM)]
substructure in strong gravitational lens galaxies, with arcs or Einstein rings, can be recovered
as function of the lens survey parameters and the detection threshold of the substructure mass.
The method is applied to different sets of mock data to explore a range of observational limits:
(i) the number of lens galaxies in the survey; (ii) the mass threshold, M low, for the detection of
substructures and (iii) the uncertainty of the measured substructure masses. We explore two
different priors on the mass function slope: a uniform prior and a Gaussian prior with α =
1.90 ± 0.1. With a substructure detection threshold M low = 3 × 108 M�, the number of
lenses available now (nl = 30), a true dark matter mass fraction in (CDM) substructure
≤1.0 per cent and a prior of α = 1.90 ± 0.1, we find that the upper limit of f can be
constrained down to a level ≤1.0 per cent [95 per cent confidence level (CL)]. In the case
of a uniform prior, the complete substructure mass distribution (i.e. mass fraction and slope)
can only be characterized in a number of favourable cases with a large number of detected
substructures. This can be achieved by an increase of the resolution and the signal-to-noise
ratio of the lensed images. In the case of a Gaussian prior on α, instead, it is always possible to
set stringent constraints on both parameters. We also find that lowering the detection threshold
has the largest impact on the ability to recover α, because of the (expected) steep mass function
slope. In the future, thanks to new surveys with telescopes, such as Square Kilometre Array
(SKA), Large Synoptic Survey Telescope (LSST) and Joint Dark Energy Mission (JDEM) and
follow-up telescopes with high-fidelity data, a significant increase in the number of known
lenses (i.e. �104) will allow us to recover the satellite population in its completeness. For
example, a sample of 200 lenses, equivalent in data quality to the Sloan Lens ACS Survey and
a detection threshold of 108 M�, allows one to determine f = 0.5 ± 0.1 per cent (68 per cent
CL) and α = 1.90 ± 0.2 (68 per cent CL).

Key words: gravitational lensing – methods: statistical – galaxies: haloes – galaxies:
structure – dark matter.

1 IN T RO D U C T I O N

In the context of the cold dark matter (CDM) paradigm, a significant
number of substructures, with a steep mass function, are expected
to populate the dark halo of galaxies. In galaxies as massive as
the Milky Way, for example, of the order of 104 substructures are
predicted inside the virial radius (Diemand et al. 2008; Springel
et al. 2008), although only about 20 have so far been observed
(Zucker et al. 2004; Willman et al. 2005; Belokurov et al. 2006;
Grillmair 2006; Martin et al. 2006; Sakamoto & Hasegawa 2006;
Zucker et al. 2006a,b; Belokurov et al. 2007; Ibata et al. 2007; Irwin

�E-mail: vegetti@astro.rug.nl

et al. 2007; Majewski et al. 2007; Walsh, Jerjen & Willman 2007;
Zucker et al. 2007; Belokurov et al. 2008). A clear comparison
between the simulated and the physical reality, however, is strongly
hampered by the difficulty of directly observing substructures in
distant galaxies, as well as in the Local Group.

While major improvements in the observations and numerical
simulations have not yet significantly alleviated the satellite crisis,
new techniques have been proposed for the indirect and direct de-
tection of subhaloes that may have a high mass-to-light ratio. In
our own Galaxy, CDM substructures can be, in principle, identified
via their effect on stellar streams (Ibata et al. 2002; Mayer et al.
2002) or via the dark matter annihilation signal from their high-
density centres (Bergström et al. 1999; Calcáneo-Roldán & Moore
2000; Stoehr et al. 2003; Colafrancesco, Profumo & Ullio 2006);
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1584 S. Vegetti and L. V. E. Koopmans

gravitational lensing, on the other hand, allows for direct detection
(measurement of the substructure gravitational signature) in the cen-
tral regions of galaxies through flux-ratio anomalies and distortions
of extended Einstein rings and arcs (e.g. Mao & Schneider 1998;
Metcalf & Madau 2001; Dalal & Kochanek 2002; Koopmans 2005).
Interestingly enough, results based on flux-ratio anomalies reverse
the satellite crisis with a recovered mass fraction in substructure
which seems to be larger than predicted by numerical simulations
(e.g. Mao et al. 2004; Macciò & Miranda 2006). While this dis-
crepancy might not be easily accommodated by an increase in the
resolution of simulations, the correct interpretation of the flux-ratio
anomalies is still subject of discussion.

In Vegetti & Koopmans (2009), we introduced a new adaptive
grid method, based on a Bayesian analysis of the surface brightness
distribution of highly magnified Einstein rings and arcs, that al-
lows the identification and precise quantification of substructure in
single-lens galaxies. This technique does not depend on the nature
of dark matter, on the shape of the main galaxy halo, strongly on the
density profile of the substructure nor on the dynamical state of the
system. It can be applied to local galaxies as well as to high-redshift
ones, as long as the lensed images are highly magnified, extended
and have a high signal-to-noise ratio. Unlike flux-ratio anomalies,
extended optical images are little affected by differential scattering
in the radio or microlensing in the optical and X-ray. If substructures
are located close to the lensed images, the method allows the deter-
mination of both their mass and position, although as the distance
between the substructure and the Einstein ring increases, the mass
model becomes more degenerate. Finally, thanks to its Bayesian
framework, the method of Vegetti & Koopmans (2009) requires
hardly any subjective intervention into the modelling, and any as-
sumption can be objectively tested through the Bayesian evidence
(MacKay 1992).

In this paper, we show how results from data sets with more than
one lens system (i.e. the number of detections and their masses) can
be combined to statistically constrain the fraction of dark matter in
substructure and their mass function, as function of the survey pa-
rameters and limits. The combination of multiple data sets becomes
important when trying to constrain the slope of the substructure
mass function. In a single-lens potential, in fact, the number of de-
tectable substructures can, in certain cases, be as small as zero or
one. More than one lens is, therefore, required in order to improve
statistics and properly sample the mass function. On the contrary,
an upper limit to the mass fraction in substructure can always be
set.

This paper is organized as follows. In Section 2, we outline the
statistical formalism of satellite detection. In Section 3, application
of the method is discussed; and in Section 4 conclusions are drawn.

2 BAY ESIAN INTERPRETATION
O F S U B S T RU C T U R E D E T E C T I O N S

In this section, we outline a Bayesian formalism that allows us to
give a statistical interpretation to the detection of dark substructure
in gravitational lens galaxies and to recover the properties of the
substructure population. Thanks to Bayes’ theorem, the likelihood
of measuring a mass substructure can be translated into probability
density distributions for the substructure mass fraction f and their
mass function dN/dm ∝ m−α , as function of the mass measurement
errors and the model parameters (when dN/dm is normalized to
unity, we refer to it as dP/dm). The latter include the minimum
and maximum masses of dark matter substructure, Mmin and Mmax,
between which the mass fraction is defined, and the lowest and

highest masses we can detect, M low and Mhigh. More precisely,
M low should not be interpreted as a hard detection threshold, but as a
statistical limit above which we believe a detection to be significant,
at the level set by the mass measurement error σ m (i.e. with a signal-
to-noise ratio of M low/σ m).

2.1 Likelihood of the substructure measurements

We derive an expression for the likelihood of observing ns substruc-
tures for a given sample of nl lenses. We assume the cumulative
dark matter mass fraction of substructure f (< R/Rvir), within a
cylinder of projected radius R of the lens, to be the same for all lens
galaxies and the detections of multiple substructures in one galaxy
to be independent from one another. We also assume that the num-
ber of substructures populating a given galactic halo fluctuates with
a distribution which is Poissonian. We know that not all these sub-
structures are observable, but only those with the right combination
of mass and position.

The likelihood of measuring ns substructures, each of mass mi,
in a single galaxy, in general can be expressed as the probability
density of having ns substructures in the considered lens, times the
normalized probability density P (mi, R | p, α) of actually observing
the mass mi within the projected radius R, where p = {Mmin, Mmax,
M low, Mhigh} is a vector containing all the fixed model parameters
introduced above, so that

L (ns, m | α, f , p) = e−μ(α,f ,<R) μ(α, f , < R)ns

ns!

×
ns∏

i=1

P (mi, R | p, α) , (1)

where m contains all the substructure masses mi and μ(α, f , <R)
is the expectation value of the number of substructures in a generic
aperture with dark matter mass MDM(< R), which will be discussed
in more details in the following section. The second factor in equa-
tion (1) describes the likelihood with which a substructure can be
identified as a function of its mass mi and position R. Although the
specific shape of P (mi, R | p, α) might change from one system to
another, its overall trend is essentially the same for all lenses: high-
mass perturbations, on or close to the lensed images, are the most
likely to be confidently observed. For each considered lens system,
P (mi, R | p, α) can be reconstructed by Monte Carlo explorations
of the model parameter space (Vegetti & Koopmans 2009).

Here, for the sake of simplicity, we assume that the probability of
measuring a mass mi for a single substructure is a Gaussian function
independent of position. This is indeed true for small regions around
the Einstein ring of the lensed images, so that P (mi, R | p, α) reduces
to

P (mi | p, α) =
∫ Mmax

Mmin

dP

dm

∣∣
true

exp [−(m−mi )2/2σm
2]√

2πσm
dm∫ Mhigh

Mlow

∫ Mmax

Mmin

dP

dm

∣∣
true

exp [−(m−m′)2
/2σm2]√

2πσm
dm dm′

,

(2)

where the Gaussian convolution expresses the scatter in the sub-
structure mass due to a measurement uncertainty and dP/dm|true is
the true substructure mass function as defined in equation (6). The
assumption of Gaussian errors on the substructure mass is motivated
by results from Vegetti & Koopmans (2009).

Equation (1) can be easily extended to the case in which more than
one lens is considered. Because the identification of a substructure in
one system does not influence what we infer about another satellite
in another lens, the likelihood function for a set of nl lenses is simply
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Statistics of mass substructure 1585

the product of the independent likelihoods of individual detections,

L ({ns, m} | α, f , p) =
nl∏

k=1

L(ns,k, mk | α, f , p) . (3)

We now go through the details of the expectation value μ(α, f ,
<R), characterizing the Poisson distribution of the number of sub-
structures in the potential of a generic lens galaxy.

2.2 Substructure expectation value

In the ideal case of infinite sensitivity to a mass perturbation, one
would be able to recover the full mass function between Mmin and
Mmax. In practice, only substructures with mass between M low and
Mhigh are observable, hence the expectation value for observable
substructures is

μ(α, f , < R) = μ0(α, f ,< R, p)
∫ Mhigh

Mlow

dP

dm

∣∣∣∣
true

dm (4)

with the expectation from the full mass function given by

μ0(α, f , < R, p) = f (< R) MDM(< R)∫ Mmax

Mmin
m dP

dm

∣∣
true

dm

= f (< R) MDM(< R)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2−α)
(

M1−α
max − M1−α

min

)
(1−α)

(
M2−α

max − M2−α
min

) α 	= 2, α 	= 1

−
(

M−1
max − M−1

min

)
log(Mmax / Mmin) α = 2

log (Mmax/Mmin)
(Mmax − Mmin) α = 1.

(5)

Hence, we assume the normalized true mass function to be given
by a power law

dP

dm

∣∣∣∣
true

=
⎧⎨
⎩

(1−α) m−α(
M1−α

max − M1−α
min

) α 	= 1

m−α

log (Mmax/Mmin) α = 1.
(6)

MDM(<R) and f (<R) are the cumulative mass in dark matter and
the cumulative fraction of dark matter in subhaloes within the con-
sidered radius, respectively. However, the presence of noise on the
data and the statistical uncertainty with which masses are measured
to introduce a scatter in the observed mass function, so that detec-
tions can be spread inside or outside our observational limits. The
significance of this effect depends on the substructure mass, with
lower masses being affected by a larger relative uncertainty. The
observed mass function dP/dm|conv can then be written as a convo-
lution of the true mass function with the error distribution, which
we assume to be Gaussian, hence

μ(α, f , < R, p) = μ0(α, f , < R, p)
∫ Mhigh

Mlow

dP

dm

∣∣∣∣
conv

dm

= μ0(α, f , < R, p)
∫ Mhigh

Mlow

∫ Mmax

Mmin

dP

dm

∣∣∣∣
true

e−(m−m′)2
/2σ 2

m

√
2πσm

dm dm′.

(7)

A mathematical proof for this procedure can be found in the Ap-
pendix.

2.3 Posterior probability function of α and f

Given a set of observations, in which a certain number of substruc-
tures are identified and their masses are quantified for one or more
lenses, equations (1) and (3) can be used to infer the mass fraction
and the mass function of the underlying subhalo population. Bayes’

theorem relates the likelihood function of the observations to the
joint posterior probability of α and f in the following way

P (α, f | {ns, m}, p) = L ({ns, m} | α, f , p) P (α, f | p)

P ({ns, m} | p)
, (8)

where P (α, f | p) is the prior probability density distribution func-
tion of α and f . For the mass fraction, we assume a non-informative
uniform prior between the limits f min = 0 and f max = 1; while we
test two different priors for α. We assume in one case a uniform dis-
tribution between αmin = 1.0 and αmax = 3.0, and in the other case
a Gaussian function with centre on 1.90 and a standard deviation of
0.1, as found in almost all numerical simulations. We refer to the
next section for a more detailed description of the prior probability
density distributions.

2.4 Dark matter mass

As shown in equation (5), the number of substructures expected
in a given potential is a function of the dark mass MDM(<R).
In the next section, we show how this mass can be empirically
estimated. Specifically, we are interested in the cumulative mass
within a narrow annulus �R = 2 δR = 0.6 arcsec centred around
the Einstein radius RE, where the formalism introduced can be
considered valid. In the approximation of a small annulus, the dark
matter mass contained in it can be approximated as

MDM ≈ 4π RE �DM(RE) δR = 4π RE

(
1 − �∗

�tot

)
�tot δR . (9)

�tot and �∗ are the total and the stellar projected mass density,
respectively. It has been found by many authors that the total mass
density has a profile which is close to isothermal (e.g. Gerhard
et al. 2001; Koopmans & Treu 2002; Koopmans et al. 2006; Czoske
et al. 2008; Koopmans et al. 2009a). Similarly, a Jaffe (1983) profile
approximates the stellar mass distribution well, i.e.

�tot(R) = �c RE

2R
(10)

and

�∗(R) = C

{
1

4 r̃
+ 1

2π

× [(1 − r̃2)−1 − (1 − r̃2)−3/2(2 − r̃2) cosh−1( r̃−1)]

}
(11)

with r̃ = R/rs.
�c is the critical surface density for lensing and rs is the scaling

radius of the Jaffe profile, which relates to the effective radius
of the lens galaxy as r s = Re/0.74. We have assumed in the above
equations that the Einstein radius and the effective radius are related
to each other by Re = 2RE, which is approximately the case for the
average Sloan Lens ACS (Advanced Camera for Surveys) Survey
(SLACS) lens (Bolton et al. 2008). Obviously, this is not exactly
true for any of these lenses, but we are not interested in analysing
an exact reproduction of the SLACS sample but just an average
realization of it. This can also be considered as a fair realization of
a typical massive early-type galaxy, given that both the internal and
environmental properties of the SLACS lenses do not significantly
depart from those of other early-type galaxies with comparable
velocity dispersion and baryonic properties (Bolton et al. 2006;
Treu et al. 2009). This assumption is in any case justified and does
not influence our results; in fact, only the cumulative dark matter
mass that is probed by all lenses is of relevance and its average
value is not altered by the assumption of Re = 2RE.
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The normalization constant C = 0.74 · �c can be derived by
imposing �tot → �∗ ≈ Crs

4R
for R → 0, i.e. by imposing that

asymptotically for R → 0 the mass density becomes that of stars
only, i.e. the maximum bulge assumption.

Because we assume that Re/r s is a constant and Re/RE is also
a constant, on average the projected DM mass fraction within an
annulus of 2δ R around the Einstein radius is a constant with a value
of about 63 per cent. Hence, we find that on average �DM ≈ 0.5 ×
0.63 �c at the Einstein radius for all lenses. This fraction is con-
sistent with other observations (e.g. Gavazzi et al. 2008; Schechter
& Wambsganss 2002). The number of substructures thus becomes
only a function of the size of the aperture and the critical density,
which itself only weakly depends on the source and lens redshifts.

3 DATA R EALIZATION AND ANALYSIS

In this section, we use a series of mock data sets to show that
the formalism presented here allows us to constrain, in different
situations, the properties of the substructure population. Different
data sets of lens galaxies with nl = 10, 30 or 200 are analysed.
A sample based on the masses and radii of the SLACS lenses,
ranked from the highest to the lowest mass enclosed within RE,
is used to construct the dark matter mass function, while results
from the method in Vegetti & Koopmans (2009) are used to set
the observational limits and the substructure mass uncertainty. In
each lens, the substructures are distributed in mass according to
dP/dm|true with Mmin = 4.0 × 106 M� and Mmax = 4.0 × 109 M�
(Diemand, Kuhlen & Madau 2007a,b) and fluctuate in number
with a Poisson probability distribution of expectation value μ(α, f ,
<R), given by equation (4).

Although it was shown by Vegetti & Koopmans (2009) that the
detection probability is a joint function of the substructure mass
and position, this probability can be assumed to be independent of
the perturber’s position if a sufficiently small annulus around the
Einstein ring is considered, in which case the equations presented
in the previous sections hold. We consider a region of ±0.3 arcsec
around RE, over which a typical SLACS lens shows a reasonable
surface brightness of its images and within which we might ex-
pect to detect CDM substructures using the method of Vegetti &
Koopmans (2009). The extent of this area is, also, such that the mass
fraction of substructures can be considered constant in radius, hence
f (R) = constant over �R.

Each mock data set is characterized by a different fraction f true of
substructures, while the true slope of the mass function is kept fixed
at αtrue = 1.90, as suggested by numerical simulations. Results from
the latest high-resolution numerical simulations seem to indicate
a dark matter mass fraction in substructures within a cylinder of
projected 10 kpc which is between 0.3 per cent1 (Mark Vogelsberger,
private communication) and 0.5 per cent (Diemand et al. 2008).
We therefore discuss three different cases f true = 0.1, 0.5, 2.5 per
cent. The latter high fraction is included because it is close to that
suggested by the median value inferred from flux-ratio anomaly
studies (Dalal & Kochanek 2002).

1 This value has been obtained by including only particles within R200crit ,
adding masses of all those particles that are in subhaloes within the con-
sidered cylinder and considering the median over 100 projected directions.
No extrapolation beyond the resolution limit or cut on the subhalo mass is
involved.

3.1 Observational limits on the substructure mass

We explore the effect of different values of the lowest detectable
mass M low, which is set at the statistical threshold above which we
are confident that other effects do not create too many false events.
We have shown in Vegetti & Koopmans (2009) that, given the
current Hubble Space Telescope (HST) data quality of the SLACS
lenses, a lower mass limit for a significant detection can be set
around 108 M�, depending on how close the perturbers are located
with respect to the lensed images and the structure of the lensed
images. However, these limits have been determined for cases not
affected by systematic errors; we adopt M low = 0.3, 1.0, 3.0 ×
108 M�. We set a finite upper mass limit Mhigh = Mmax.

3.2 Priors on α and f

While the mass fraction of satellites is the most uncertain parameter,
most studies seem to agree on the mass function, with values of the
slope α ranging from 1.8 to 2.0 (e.g. Helmi, White & Springel
2002; Gao et al. 2004; Diemand et al. 2008; Springel et al. 2008).
This is a direct consequence of the assumed cold nature of the
dark matter particles. We analyse two scenarios: the first, relying
on results from numerical simulations, assumes for α a Gaussian
prior centred at αtrue with standard deviation σα = 0.1; the second
scenario, allowing for more freedom, has a uniform prior between
1.0 and 3.0. In general, the first case can be seen as a test of N-body
simulations and the second as a test of nature itself, although in
the specific case of this paper the data have been created with a
combination of fraction and slope typical of a standard cosmology.
The former prior, obviously, provides a well-defined mass function
slope, but it also reduces the uncertainty in the mass fraction, which
is less well defined than α and can vary considerably between similar
simulations. Different phenomena can affect the mass fraction, as
for example the resolution of the simulations, or the lack, in high-
resolution simulations, of gas physics, that could sensibly influence
the substructure survival (i.e. f could be even higher than what the
simulations suggest in the inner regions of the galactic haloes). We
assume, conservatively, for f a uniform prior ranging between 0 and
100 per cent.

3.3 Results in the limit of no mass measurement errors

We present results for cases in which the errors on the mass measure-
ments can be neglected. Specifically, this translates into convolving
the mass distribution not with a Gaussian but with a delta function
around mi in the equations of Section 2.

In Fig. 1, we show the joint probability contours P (α, f |{ns,
m}, p) and the marginalized probabilities P (f |{ns, m}, p) and
P (α | {ns, m}, p), for systems containing 10 randomly realized
lenses. Specifically the plotted contours contain, in the limit of a
Gaussian distribution, respectively, 68, 95 and 97.2 per cent of the
marginalized probability function.

In the case of a uniform prior, while a good upper limit to f
can always be set, little can be said about the slope, which can
only be constrained for a limited number of favourable physical
and observational conditions, such as (f = 0.5 per cent, M low =
0.3 × 108 M�), (f = 2.5 per cent, M low = 0.3 × 108 M�) and (f =
2.5 per cent, M low = 1.0 × 108 M�). In Fig. 2, an equivalent plot is
presented for systems with nl = 30; although even more stringent
limits can be given for f , we are still unable to recover the underlying
mass function for most of the possible scenarios.
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Statistics of mass substructure 1587

Figure 1. Results for systems with 10 randomly realized lenses. In each panel, the joint probability P (α, f |{ns, m}, p) contours and marginalized probabilities
P (f |{ns, m}, p) and P (α |{ns, m}, p) are given for a uniform prior (solid lines) and for a Gaussian prior in α (dashed lines). Moving from one panel to the
next, the substructure fraction f increases from left- to right-hand panels and the detection limit M low increases from top to bottom panels.

The situation can be substantially improved by increasing the
number of detectable substructures with a larger number of lenses.
To provide insight into future capabilities, results from three sam-
ples of 200 lenses with f = 0.5 per cent and, respectively, M low =
0.3 × 108, 1.0 × 108 and 3.0 × 108 M� are given in Fig. 3. Cur-
rently, no uniform sample with 200 lenses with high signal-to-
noise ratio and high resolution (equivalent to that of HST) is avail-
able. However, forthcoming ground- and space-based instruments
[e.g. LSST/JDEM, Extreme Very Large Array (EVLA), e-Multi-
Element Radio-Linked Interferometer Network (e-MERLIN), Low
Frequency Array (LOFAR) and SKA] can provide these numbers
(in fact beyond these) in the coming 5–10 years and the required
data quality by dedicated followup. A detailed characterization of
the CDM mass function, through the technique of Vegetti & Koop-
mans (2009), could therefore be realizable in the coming years if
investments are made in large high-resolution and high-sensitivity
lens surveys with these instruments (see Koopmans et al. 2009b).
As can be seen from both Figs 1 and 2, in the case of a Gaussian
prior on α, tight limits can be set on the mass fraction for all possible
combinations of the considered parameters.

The results from this section are summarized in Table 1, where we
report the input values for each parameter, the recovered maximum
posterior values (f MP; αMP) at which P (α, f |{ns, m}, p) reaches
its maximum, the median, the 68 and 95 per cent (σ 68 and σ 95)
confidence levels (CLs) of the marginalized probabilities P (f |{ns,
m}, p) and P (α |{ns, m}, p) for both the cases of a uniform and a

Gaussian prior on α. σ 68 and σ 95, in the particular case of a Gaussian
distribution, respectively represent the 1σ and 2σ errors.

3.4 The effect of mass measurement errors

We explore now how the presence of uncertainty in the mass mea-
surements affects our analysis. In particular, we consider three
cases: σ m = 0.1 × 108 M� with M low = 0.3 × 108 M�, σ m =
1/3 × 108 M� with M low = 108 M� and σ m = 1.0 × 108 M�
with M low = 3.0 × 108 M�, i.e. a limiting signal-to-noise ratio of
M low/σ m = 3. The lens systems analysed here have nl = 10, 30,
200 lenses and a mass fraction in substructures f true = 0.5 per cent.
Relative likelihood contours are plotted in the three panels of Fig. 4.
These have to be compared with the equivalent no-error results in
Figs 1–3. Results are reported in Table 2.

The effect of measurement errors on the substructure mass de-
pends on the form of prior adopted for α, with uniform priors being
more strongly affected than Gaussian ones. Errors as large as σ m =
1/3 × 108 M� combined with mass threshold of M low = 108 M�
can significantly influence even systems with 200 lenses . Specifi-
cally, these systems were created by drawing masses between Mmin

and Mmax, then scattering each mass with a Gaussian distribution
(i.e. mimicking the measurement uncertainty) and then using only
those objects that fall within the detection range [Mlow, Mhigh] to
constrain the fraction and the mass distribution. We refer to the
Appendix for a mathematical proof that this way of proceeding
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1588 S. Vegetti and L. V. E. Koopmans

Figure 2. Similar to Fig. 1 for systems with 30 lenses.

Figure 3. Results for three samples with 200 randomly realized lenses with f = 0.5 per cent and, respectively, M low = 0.3 × 108 M� (left-hand panel),
M low = 1.0 × 108 M� (middle panel) and M low = 3.0 × 108 M� (right-hand panel). The joint probability P (α, f |{ns, m}, p) contours and marginalized
probabilities P (f |{ns, m}, p) and P (α |{ns, m}, p) for a uniform prior (solid lines) and for a Gaussian prior in α (dashed lines) are shown.

is equivalent to drawing between M low and Mhigh with a Poisson
probability density distribution of expectation values given by equa-
tion (4).

4 C O N C L U S I O N S

We have introduced a statistical formalism for the interpretation
and the generalization of subhalo detection in gravitational lens
galaxies that allows us to quantify the mass fraction and the mass

function of CDM substructures. Given mock sets of lenses, with
properties typical of a CDM cosmology, we have analysed how
well the true parameters can be recovered. The formalism de-
pends on several parameters, such as the number of lenses, the
mass detection threshold and the measurement errors. It has a
very general nature and, in principle, could be used to statisti-
cally analyse substructure detection by flux-ratio anomalies or time
delay/astrometric perturbations as well. In practice, these methods
would first need to show that their mass estimates are meaningful
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Table 1. Results for systems with no mass measurement error for a uniform (left) and a Gaussian (right) prior on α.

f true M low nl f MP αMP f med σ f ,68 σ f ,95 αmed σα,68 σα,95

(per cent)
(
108 M�

)
(per cent) (per cent) (per cent) (per cent)

0.1 0.3 10 0.14 | 0.14 1.91 | 1.90 0.18 | 0.15 −0.06
+0.11 |−0.04

+0.06
−0.09
+0.22 |−0.07

+0.10 1.88 | 1.90 −0.37
+0.48 |−0.05

+0.05
−0.58
+0.81 |−0.09

+0.09

30 0.11 | 0.10 1.69 | 1.90 0.13 | 0.10 −0.04
+0.08 |−0.02

+0.03
−0.07
+0.15 |−0.04

+0.05 1.64 | 1.90 −0.25
+0.29 |−0.03

+0.03
−0.40
+0.51 |−0.06

+0.05

1.0 10 0.55 | 0.16 2.70 | 1.90 0.60 | 0.20 −0.35
+0.70 |−0.10

+0.10
−0.45
+1.40 |−0.10

+0.20 2.69 | 1.91 −0.57
+0.23 |−0.07

+0.07
−1.10
+0.29 |−0.11

+0.11

30 0.10 | 0.12 1.81 | 1.90 0.20 | 0.13 −0.09
+0.30 |−0.05

+0.06
−0.12
+0.69 |−0.07

+0.11 2.14 | 1.90 −0.65
+0.60 |−0.04

+0.04
−0.93
+0.78 |−0.07

+0.07

3.0 10 1.53 | 0.10 2.77 | 1.90 2.15 | 0.25 −1.70
+4.06 |−0.15

+0.30
−2.00
+8.32 |−0.20

+0.55 2.78 | 1.92 −0.46
+0.16 |−0.10

+0.10
−1.10
+0.20 |−0.16

+0.16

30 0.80 | 0.13 2.62 | 1.90 1.58 | 0.18 −1.19
+2.41 |−0.09

+0.13
−1.44
+4.67 |−0.13

+0.27 2.78 | 1.91 −0.43
+0.16 |−0.07

+0.07
−1.01
+0.20 |−0.11

+0.12

0.5 0.3 10 0.45 | 0.50 1.78 | 1.89 0.49 | 0.42 −0.12
+0.18 |−0.08

+0.09
−0.18
+0.34 |−0.13

+0.16 1.76 | 1.90 −0.19
+0.21 |−0.03

+0.03
−0.31
+0.37 |−0.06

+0.05

30 0.49 | 0.50 1.90 | 1.90 0.51 | 0.50 −0.07
+0.09 |−0.06

+0.06
−0.11
+0.16 |−0.09

+0.11 1.90 | 1.90 −0.12
+0.13 |−0.02

+0.01
−0.20
+0.23 |−0.03

+0.03

200 0.51 | 0.50 1.92 | 1.90 0.52 | 0.52 −0.05
+0.06 |−0.04

+0.04
−0.08
+0.10 |−0.07

+0.08 1.92 | 1.90 −0.09
+0.09 |−0.01

+0.01
−0.15
+0.15 |−0.02

+0.02

1.0 10 0.52 | 0.48 2.04 | 1.90 0.85 | 0.52 −0.36
+1.28 |−0.15

+0.18
−0.49
+2.55 |−0.23

+0.32 2.33 | 1.90 −0.53
+0.44 |−0.04

+0.04
−0.83
+0.59 |−0.06

+0.06

30 0.42 | 0.50 1.68 | 1.90 0.47 | 0.44 −0.11
+0.14 |−0.10

+0.11
−0.16
+0.26 |−0.15

+0.19 1.69 | 1.90 −0.26
+0.29 |−0.02

+0.02
−0.43
+0.51 |−0.04

+0.04

200 0.46 | 0.48 1.82 | 1.90 0.49 | 0.50 −0.07
+0.10 |−0.08

+0.09
−0.12
+0.18 |−0.13

+0.16 1.84 | 1.90 −0.19
+0.20 |−0.02

+0.02
−0.30
+0.34 |−0.03

+0.03

3.0 10 1.85 | 0.46 2.56 | 1.90 5.91 | 0.60 −4.01
+6.92 |−0.30

+0.30
−5.21
+1.28 |−0.40

+0.60 2.82 | 1.91 −0.31
+0.13 |−0.05

+0.06
−0.70
+0.16 |−0.09

+0.09

30 0.42 | 0.50 1.68 | 1.90 0.47 | 0.44 −0.11
+0.14 |−0.10

+0.11
−0.16
+0.26 |−0.15

+0.19 1.69 | 1.90 −0.26
+0.29 |−0.02

+0.02
−0.43
+0.51 |−0.04

+0.04

200 0.50 | 0.50 1.90 | 1.90 0.35 | 0.43 −0.09
+0.13 |−0.12

+0.16
−0.13
+0.30 |−0.19

+0.28 1.35 | 1.90 −0.24
+0.38 |−0.03

+0.03
−0.32
+0.70 |−0.06

+0.05

2.5 0.3 10 2.50 | 2.56 1.88 | 1.89 2.68 | 2.57 −0.27
+0.33 |−0.21

+0.22
−0.44
+0.59 |−0.34

+0.39 1.85 | 1.89 −0.08
+0.08 |−0.03

+0.03
−0.13
+0.14 |−0.04

+0.05

30 2.39 | 2.31 1.82 | 1.89 2.42 | 2.33 −0.19
+0.21 |−0.16

+0.16
−0.31
+0.36 |−0.27

+0.28 1.82 | 1.90 −0.07
+0.07 |−0.02

+0.01
−0.12
+0.13 |−0.03

+0.03

1.0 10 2.42 | 2.46 1.75 | 1.89 2.54 | 2.50 −0.36
+0.42 |−0.34

+0.39
−0.57
+0.74 |−0.56

+0.66 1.76 | 1.90 −0.16
+0.17 |−0.03

+0.03
−0.27
+0.30 |−0.05

+0.05

30 2.12 | 2.14 1.70 | 1.89 2.16 | 2.15 −0.22
+0.25 |−0.21

+0.23
−0.35
+0.43 |−0.35

+0.39 1.70 | 1.90 −0.11
+0.12 |−0.02

+0.01
−0.18
+0.20 |−0.03

+0.03

3.0 10 2.74 | 2.76 1.89 | 1.90 5.26 | 2.88 −2.76
+14.3 |−0.63

+0.75
−3.38
+35.8 |−1.00

+1.25 2.22 | 1.90 −0.46
+0.44 |−0.03

+0.03
−0.73
+0.65 |−0.05

+0.05

30 1.86 | 2.48 1.28 | 1.89 1.96 | 2.53 −0.32
+0.32 |−0.40

+0.44
−0.48
+0.60 |−0.60

+0.76 1.31 | 1.90 −0.19
+0.21 |−0.02

+0.02
−0.27
+0.36 |−0.03

+0.03

Note. The input parameters are given in Columns (1) to (3): the true mass fraction in substructure, f true, the lower detection mass threshold, M low, and the
number of lens systems in a given sample, nl. The maximum posterior values of f and α are given in Columns (4) and (5). Columns from (6) to (8) and (9) to
(11) list the median, the 68 and 95 per cent CL for f and α, respectively.

and second they would have to determine the probability distri-
bution of flux-ratio anomalies or perturbations, either as function
of the lens geometry or marginalized over all model parameters,
which could be rather computationally expensive. The method has
been tested on several mock data sets, with parameter settings based
on our knowledge of the SLACS lenses. Several physical and ob-
servational scenarios have been considered. We list here the main
results.

(i) If the number of arc/ring lens systems is 100, as is the
case for current surveys (e.g. SLACS), the ability to constrain the
mass fraction and the mass function of satellites still depends on
the form of prior which is assumed for α. In particular, if results
from numerical simulations are assumed to hold and a Gaussian
prior with αtrue = 1.9 ± 0.1 is adopted, we are able to constrain
both α and f for any data sets containing a number of lenses
nl ≥ 10, with improved limits for either increasing mass fractions,
decreasing detection threshold or increasing number of lenses. If
instead a wider range of possibilities is explored by assuming a
uniform prior, one can still set strong limits on f , even for val-
ues as low as f = 0.1 per cent and a detection threshold M low =
0.3 × 108 M�, but the mass function slope can be recovered only in
a limited number of favourable cases, characterized by high-mass
fraction and low detection threshold.

(ii) Our ability to constrain α could be considerably improved
either by increasing our sensitivity to substructures, i.e. by increas-
ing the quality of the data, or by increasing the number of analysed

objects. Although competing with the quality of HST seems at the
moment difficult, future surveys such as LSST/JDEM in the optical
and EVLA, e-MERLIN, LOFAR and SKA in the radio, will surely
lead to an increase in the number of known lenses by several orders
of magnitude (see Koopmans et al. 2009b; Marshall et al. 2009)
and dedicated optical and/or radio followup could provide equiv-
alent or better data quality than HST . We expect therefore, in the
foreseeable future, to be able to characterize the galactic subhalo
population with stringent constraint, both on the mass fraction and
slope.

(iii) Although we have not explicitly performed a model compar-
ison between different cosmologies, as for example CDM versus
Warm Dark Matter (WDM) (this would require an extra marginal-
ization of the parameter space), the formalism introduced here,
combined with the sensitivity of our method to CDM substruc-
tures, will allows us, in the future, to discriminate among these two
scenarios and thus test the physics of dark matter.
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1590 S. Vegetti and L. V. E. Koopmans

Figure 4. Effect of different measurement error levels on the substructure mass. Similar as Fig. 1 for systems with f = 0.5 per cent, M low = 0.3 × 108 M�
and σm = 0.1 × 108 M� (upper panels), with M low = 108 M� and σm = 1/3 × 108 M� (middle panels) and with M low = 3 × 108 M� and σm = 1.0 ×
108 M� (lower panels). Results for 10, 30 and 200 lenses are plotted in the left-hand, middle and right-hand panels, respectively.

Table 2. Results for systems with a mass measurement error of 0.1 × 108, 0.3 × 108 and 1.0 × 108 M� for a uniform (left) and a Gaussian (right) prior on α.

f true M low nl f MP αMP f med σ f ,68 σ f ,95 αmed σα,68 σα,95

(per cent) (108 M�) (per cent) (per cent) (per cent) (per cent)

0.5 0.3 10 0.53 | 0.61 2.24 | 1.91 0.57 | 0.64 −0.09
+0.09 |−0.12

+0.09
−0.15
+0.18 |−0.15

+0.18 2.25 | 1.91 −0.20
+0.22 |−0.02

+0.04
−0.32
+0.36 |−0.04

+0.06

30 0.53 | 0.53 1.91 | 1.90 0.54 | 0.54 −0.09
+0.09 |−0.06

+0.06
−0.12
+0.15 |−0.09

+0.09 1.91 | 1.91 −0.12
+0.12 |−0.01

+0.01
−0.18
+0.20 |−0.04

+0.01

200 0.51 | 0.52 1.93 | 1.90 0.51 | 0.51 −0.06
+0.06 |−0.03

+0.06
−0.09
+0.12 |−0.06

+0.09 1.93 | 1.91 −0.08
+0.08 |−0.01

+0.01
−0.14
+0.14 |−0.02

+0.01

1.0 10 0.53 | 0.44 2.18 | 1.90 0.82 | 0.48 −0.36
+0.94 |−0.15

+0.15
−0.48
+1.79 |−0.21

+0.27 2.41 | 1.91 −0.46
+0.38 |−0.04

+0.04
−0.77
+0.52 |−0.08

+0.06

30 0.55 | 0.54 1.98 | 1.90 0.64 | 0.54 −0.15
+0.18 |−0.09

+0.12
−0.21
+0.48 |−0.15

+0.21 2.03 | 1.91 −0.24
+0.26 |−0.04

+0.02
−0.40
+0.44 |−0.04

+0.04

200 0.67 | 0.59 2.12 | 1.90 0.72 | 0.61 −0.15
+0.18 |−0.09

+0.09
−0.21
+0.39 |−0.12

+0.15 2.15 | 1.91 −0.16
+0.18 |−0.01

+0.01
−0.28
+0.30 |−0.04

+0.02

3.0 10 4.69 | 0.42 2.85 | 1.90 4.01 | 0.50 −2.76
+4.76 |−0.25

+0.25
−3.51
+9.02 |−0.25

+0.50 2.78 | 1.91 −0.38
+0.16 |−0.05

+0.06
−0.83
+0.20 |−0.09

+0.09

30 2.76 | 0.51 2.57 | 1.90 5.26 | 0.75 −3.51
+4.76 |−0.25

+0.1e−4
−4.26
+8.02 |−0.25

+0.25 2.76 | 1.91 −0.32
+0.17 |−0.04

+0.03
−0.62
+0.21 |−0.06

+0.06

200 0.51 | 0.51 1.90 | 1.90 3.76 | 0.75 −2.25
+4.26 |−0.25

+0.1e−4
−3.01
+7.02 |−0.25

+0.25 2.68 | 1.90 −0.33
+0.22 |−0.03

+0.03
−0.58
+0.28 |−0.04

+0.05

Note. The input parameters are given in Columns (1) to (3): the true mass fraction in substructure, f true, the lower detection mass threshold, M low, and the
number of lens systems in a given sample, nl. The maximum posterior values of f and α are given in Columns (4) and (5). Columns from (6) to (8) and (9) to
(11) list the median, the 68 and 95 per cent CL for f and α, respectively.
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Czoske O., Barnabè M., Koopmans L. V. E., Treu T., Bolton A. S., 2008,
MNRAS, 384, 987

Dalal N., Kochanek C. S., 2002, ApJ, 572, 25
Diemand J., Kuhlen M., Madau P., 2007a, ApJ, 667, 859
Diemand J., Kuhlen M., Madau P., 2007b, ApJ, 657, 262
Diemand J., Kuhlen M., Madau P., Zemp M., Moore B., Potter D., Stadel J.,

2008, Nat, 454, 735
Gao L., White S. D. M., Jenkins A., Stoehr F., Springel V., 2004, MNRAS,

355, 819
Gavazzi R., Treu T., Koopmans L. V. E., Bolton A. S., Moustakas L. A.,

Burles S., Marshall P. J., 2008, ApJ, 677, 1046
Gerhard O., Kronawitter A., Saglia R. P., Bender R., 2001, AJ, 121,

1936
Grillmair C. J., 2006, ApJ, 645, L37
Helmi A., White S. D., Springel V., 2002, Phys. Rev. D, 66, 063502
Ibata R. A., Lewis G. F., Irwin M. J., Quinn T., 2002, MNRAS, 332,

915
Ibata R., Martin N. F., Irwin M., Chapman S., Ferguson A. M. N., Lewis

G. F., McConnachie A. W., 2007, ApJ, 671, 1591
Irwin M. J., Belokurov V., Evans N. W., Ryan-Weber et al., 2007, ApJ,

656, L13
Jaffe W., 1983, MNRAS, 202, 995
Koopmans L. V. E., 2005, MNRAS, 363, 1136
Koopmans L. V. E., Treu T., 2002, ApJ, 568, L5
Koopmans L. V. E., Treu T., Bolton A. S., Burles S., Moustakas L. A., 2006,

ApJ, 649, 599
Koopmans L. V. E. et al., 2009a, ApJ, 703, L51
Koopmans L. V. E. et al., 2009b, preprint (arXiv:0902.3186v2)
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APPENDIX A :

We show here that the procedure of first drawing objects between
Mmin and Mmax from d P/d m|true, then scattering with a Gaussian
and finally restricting to those masses between M low and Mhigh gives
a probability P (N obs) of observing N obs objects that is equivalent
to the Poisson probability density distribution, with expectation
value μs, of N obs objects between M low and Mhigh expressed by the
convolution in equation (7).

Let us divide the mass ranges [Mmin, Mmax] and
[
Mlow, Mhigh

]
,

respectively, in n and n′ subintervals of infinitesimally small widths
dm and dm′. Lets call ps,j the probability that an object is scattered

from the jth mass bin dmj to the kth one dm′
k . In the particular case

of Gaussian errors, ps,j,k reads as follows:

ps,j ,k = e−(m−m′)2
/2σ 2

√
2πσ

dm′
k , (A1)

with m ∈ dmj and m′ ∈ dm′
k.

First, we show that if substructures are Poisson distributed in
each mass bin with expectation value dμj , then the probability of
having Ns objects scattered from dmj into dm′

k is also a Poisson
distribution with expectation value dμs,j ,k = ps,j ,k dμj

Ps,j (Ns, dμs,j ,k)

=
∞∑

i=Ns

P (i, dμj )

(
i

Ns

)
p

Ns
s,j ,k (1 − ps,j ,k)i−Ns

=
∞∑

i=Ns

e−dμj dμi
j

i!

(
i

Ns

)
p

Ns
s,j ,k (1 − ps,j ,k)i−Ns

= p
Ns
s,j ,k

Ns!
lim
n→∞

n∑
i=Ns

e−dμj dμi
j

(i − Ns)!
(1 − ps,j ,k)i−Ns

=
(

ps,j ,k

1 − ps,j ,k

)Ns e−dμj dμ
Ns
j

Ns!
lim
n→∞

n−Ns∑
k=0

dμk
j

k!
(1 − ps,j ,k)k

= e−ps,j ,k μj (ps,j ,k dμj )Ns

Ns!
, (A2)

hence it follows that dμs,j,k = ps,j,k dμj. This result directly follows
from the fact that in the case of high number statistics the Binomial
tends to a Poisson distribution and from the product rule of the
Poisson distribution. Specifically, each dμj reads as

dμj = μ0(α, f , R)
dP

dm

∣∣∣∣
true

dmj . (A3)

We now extend this result to two mass intervals of the same size
dm; thanks to the sum rule, the probability of Nobs objects being
scattered is again Poissonian with dμs,k = (ps,1,kdμ1 + ps,2,kdμ2)

P (Nobs, dμs)

=
Nobs∑
i=0

Ps,1(i) · Ps,2(Nobs − i)

=
Nobs∑
i=0

e−ps,1,kdμ1 (ps,1,k dμ1)i

i!

e−ps,2,kdμ2 (ps,2,k dμ2)Nobs−i

(Nobs − i)!

= e(ps,1,kdμ1+ps,2,kdμ2)(ps,2 dμ2)Nobs

Nobs∑
i=0

dμi
1

i!

dμ−i
2

(Nobs − i)!

= e−(ps,1,kdμ1+ps,2,kdμ2)(ps,2,k dμ2)Nobs

(
1 + ps,1,k dμ1

ps,2,k dμ2

)Nobs

Nobs!

= e−dμs,k dμ
Nobs
s,k

Nobs!
. (A4)

By induction it can be shown that in the case of a generic number
n of intervals dμs,k = ∑n

j=1 ps,j ,k dμj , so that the probability of
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being scattered outside [Mmin, Mmax] and inside [M low, Mhigh] is a
Poisson distribution with expectation value

μs =
n′∑

k=1

n∑
j=1

ps,j ,k dμj

=
n′∑

k=1

n∑
j=1

ps,j ,k μ0(α, f , R)
dP

dm

∣∣∣∣
true

dmj dm′
k . (A5)

In the limit of equally infinitesimal intervals, i.e. dm → 0 and
dm′ → 0 and making use of equation (A.1) this becomes

μs = μ0(α, f ,R)
∫ Mhigh

Mlow

∫ Mmax

Mmin

e−(m−m′)2
/2σ 2

√
2πσ

dP

dm

∣∣∣∣
true

dm dm′ .

(A6)

q.e.d

This paper has been typeset from a TEX/LATEX file prepared by the author.
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