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ABSTRACT
We present the results of a search for galaxy substructures in a sample of 11 gravitational lens
galaxies from the Sloan Lens ACS Survey by Bolton et al. We find no significant detection of
mass clumps, except for a luminous satellite in the system SDSS J0956+5110. We use these
non-detections, in combination with a previous detection in the system SDSS J0946+1006, to
derive constraints on the substructure mass function in massive early-type host galaxies with
an average redshift 〈zlens〉 ∼ 0.2 and an average velocity dispersion 〈σ eff〉 ∼ 270 km s−1. We
perform a Bayesian inference on the substructure mass function, within a median region of
about 32 kpc2 around the Einstein radius (〈Rein〉 ∼ 4.2 kpc). We infer a mean projected sub-
structure mass fraction f = 0.0076+0.0208

−0.0052 at the 68 per cent confidence level and a substructure
mass function slope α < 2.93 at the 95 per cent confidence level for a uniform prior probability
density on α. For a Gaussian prior based on cold dark matter (CDM) simulations, we infer f =
0.0064+0.0080

−0.0042 and a slope of α = 1.90+0.098
−0.098 at the 68 per cent confidence level. Since only one

substructure was detected in the full sample, we have little information on the mass function
slope, which is therefore poorly constrained (i.e. the Bayes factor shows no positive preference
for any of the two models). The inferred fraction is consistent with the expectations from CDM
simulations and with inference from flux ratio anomalies at the 68 per cent confidence level.

Key words: galaxies: structure.

1 IN T RO D U C T I O N

One of the most robust predictions of the cold dark matter (CDM)
theory is that dark matter haloes of all scales should be populated by
thousands of low-mass substructures (Kauffmann, White & Guider-
doni 1993; Klypin et al. 1999; Diemand et al. 2008; Springel et al.
2008). While an equivalent number of satellites has not yet been
detected in observations of the Local Group galaxies (e.g. Kravtsov
2010, and references therein), reconciling the observations with the
theoretical expectations could be possible by invoking the existence
of a large population of low surface brightness or even dark satel-
lites. Alternatively, solving the problem would require modifying
the nature of dark matter (e.g. Nierenberg et al. 2013a).

Strong gravitational lensing, being sensitive to any form of matter,
provides a unique opportunity to address this issue. It was initially
suggested by Mao & Schneider (1998) that flux-ratio anomalies of

� E-mail: svegetti@mpa-garching.mpg.de

multiply imaged lensed quasars can be interpreted as the signature
of mass substructure in the lens galaxies at scales smaller than
the lensed image separation. Indeed, Metcalf & Madau (2001),
Chiba (2002), Dalal & Kochanek (2002), Metcalf & Zhao (2002),
Keeton, Gaudi & Petters (2003) and Nierenberg et al. (2014) showed
that mass substructure could be responsible for a violation of the
magnification relations.

While early comparisons with N-body numerical simulations
have indicated an agreement between the predicted and the gravi-
tational lensing inferred amount of substructure (e.g. Bradač et al.
2002), more recently Xu et al. (2009) have shown that the probabil-
ity of reproducing the observed rate of anomalies with the subhalo
population of the Aquarius simulation is of the order of 10−3. The
inclusion of line-of-sight structures from the Millennium II simu-
lations only increases the chance of flux-ratio anomalies to about
10–30 per cent (Xu et al. 2012). At the same time however, gravita-
tional lens galaxies are more commonly massive early-type galaxies
and are hosted therefore by dark matter haloes that are more massive
and potentially different (e.g. with a higher ellipticity) than those
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of the Aquarius simulation, which are primarily Milky-Way-type
haloes. In particular, Metcalf & Amara (2012) using more realistic
simulations of lens galaxies have found consistent results between
the expectations and the observations. A similar conclusion was
more recently obtained by Xu et al. (2013).

Schechter & Moore (1993), McKean et al. (2007) and More et al.
(2009) have found that in some cases, the flux-ratio anomaly is
related to the presence of a single massive luminous satellite rather
than a large population of small mass CDM substructures. It has also
been suggested that evidence for mass substructure in lens galaxies
can be obtained from astrometric measurements alone (Chen et al.
2007) or in combination with flux-ratio anomalies (Fadely & Keeton
2012) and time-delay measurements (Keeton & Moustakas 2009).

Koopmans (2005) and Vegetti & Koopmans (2009a) have de-
veloped an alternative technique of direct gravitational imaging of
mass substructure based on perturbations to the surface brightness
distribution of lensed arcs and Einstein rings. While the gravita-
tional imaging technique is complementary to the above methods,
it has the major advantage of being able to directly measure the sub-
structure mass and position, and therefore is less degenerate in the
mass models. This feature of the gravitational imaging technique
makes it particularly powerful in constraining the substructure mass
function (Vegetti & Koopmans 2009b).

The gravitational imaging technique has previously been applied
to high resolution Hubble Space Telescope (HST; Vegetti et al. 2010)
and Keck adaptive optics imaging (Vegetti et al. 2012). This method
has already led to the detection of two substructures at redshifts of
0.222 and 0.881, with respective masses of (3.51 ± 0.15) × 109

and (1.9 ± 0.1) × 108 M�. The substructure mass here quoted is
the total 3D mass measured under the assumption of a spherical
pseudo-Jaffe mass profile (Section 4.3). As shown in Vegetti et al.
(2012) the mass so measured is consistent with the projected mass
derived in a model-independent fashion from the pixelized density
corrections (Section 4.2). This indicates that the measured lensing
mass is not significantly affected by our choice of mass density pro-
file (see also Vegetti & Vogelsberger 2014). Under the assumption
that these detections are associated with the host lens galaxy, they
imply a substructure projected (within ∼5 kpc) mass fraction of
〈f 〉 = 0.033+0.036

−0.018 and a slope of the substructure mass function
of α = 1.1+0.6

−0.4 (where dN/dm ∝ m−α). Within the large errors,
these results are consistent with the theoretical expectations at the
95 per cent confidence level (CL; Diemand et al. 2008; Springel et al.
2008; Xu et al. 2013). The mass fraction is inferred by assuming a
mass function normalized between 4 × 106 and 4 × 109 M�.

In this paper, we present a statistical analysis of a sample of
11 gravitational lens galaxies with the aim of deriving tighter con-
straints on the substructure mass function. The layout of the paper
is as follows. In Section 2 we provide a short description of the
analysed data. In Section 3 we provide an overview of the full anal-
ysis from the lens modelling to the derivation of the substructure
mass function. In Section 4 we describe the gravitational imaging
technique, while in Section 5 we present the main lens modelling
results. In Section 6 we derive statistical constraints on the substruc-
ture mass function and we finally conclude in Section 7.

Throughout the paper we assume the following cosmology,
H0 = 73 km s−1 Mpc−1, �m = 0.25 and �� = 0.75.

2 DATA

The gravitational lenses analysed in this paper are all taken from
the Sloan Lens ACS Survey (SLACS; e.g. Bolton et al. 2008a).
These were selected from the main (Strauss et al. 2002) and lumi-

nous red galaxy (LRG; Eisenstein et al. 2001) samples of the Sloan
Digital Sky Survey (SDSS; York et al. 2000). The SLACS gravi-
tational lenses are generally massive early-type galaxies, typical of
the parent samples from which they are selected (e.g. Bolton et al.
2006).

The data used in the current analysis were obtained using the
wide-field channel (WFC) of the Advanced Camera for Surveys
(ACS) aboard the HST. A single orbit was used for each unique
filter, split into four dithered exposures. The data were rectified
and co-added on to a uniform image grid using custom software
written in the IDL language. The surface brightness profiles of the
lensing foreground galaxies were modelled and subtracted using
the radial B-spline formalism described by Bolton et al. (2006,
2008a). Initial models for the lens galaxy surface brightness dis-
tribution were optimized non-linearly to determine the centroid,
axis ratio and position angle of the lens galaxies. These parame-
ters were then used to define an elliptical coordinate system for
the final linear model fitting, including sufficient multipole orders
to provide model-subtracted images free of appreciable systematic
residuals. Masks for the lensed image features were generated man-
ually and applied during the B-spline model fitting. In some cases,
these masks were updated based on initial B-spline subtracted resid-
ual images, and the fitting procedures were repeated. Vegetti et al.
(2010) have explicitly tested the effect of the galaxy subtraction
procedure on the significance of substructure detections using a
Sérsic profile rather than a B-spline surface brightness profile and
found no significant influence. Moreover, the B-spline subtraction
was done independently for each filter and we find in this paper that
the sensitivity function to substructures (see Section 6.1) is con-
sistent across filters. A similar test with an equivalent output was
done by Vegetti et al. (2012). We are confident, therefore, that the
galaxy subtraction procedure is not a major source of systematic
error on our inference of the substructure mass function. This can
be understood because the effect of a substructure on the bright-
ness distribution of a lensed image occurs on spatial scales over
which the galaxy surface brightness model varies very little (i.e.
there is very little mixing of spatial scales and early-type galaxies
show very little structure on the scales where substructure causes
anomalies).

In order to increase our sensitivity to lower mass substructures,
the subsample of lenses investigated in this paper was selected
purely on the basis of the lensed images signal-to-noise ratio (S/N)
in the I and V band, whenever ACS images are available. Specifi-
cally, all the images in the full 11 lens sample have at least 200 pixels
with a S/N ≥ 2 and at least 50 pixels with S/N ≥ 3. This ensures
that there is a region on the lensed images large enough for substruc-
tures to be detected when present with a mass above the detection
threshold. This selection does not bias in favour or against substruc-
ture in the lens, since substructure in the probed mass range has a
negligible effect on the source magnification. Since no substructure
detection was obtained for the sample here considered, the lack of
V-band data for some of the systems does not represent a major
issue for the interpretation of the lens modelling. When constrain-
ing the substructure mass function, we also consider our previous
detection in the gravitational lens system SDSS J0946+1006 that
was similarly analysed by Vegetti et al. (2010). In Table 1 we list
all of the lens systems in our sample with the lens and source red-
shifts, the filter used for the imaging and other relevant properties.
The gravitational lens system B1938+666, previously analysed by
Vegetti et al. (2012), is not included in the current sample as this
system is not part of the SLACS survey but of the Cosmic Lens All-
sky Survey (CLASS), and follows therefore a different selection
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Table 1. The list of the gravitational lens systems considered in this paper, with the lens and source redshift, the lens effective radius, the
velocity dispersion within half of the effective radius, the stellar mass (from Auger et al. 2009) and the filter used for their imaging and for
the lens modelling (I = F814W and V = F555W).

Name zlens zsource Reff σ eff/2 log[MSalp
∗ /M�] Filter

(SDSS) (kpc) (km s−1)

J0252+0039 0.280 0.982 5.68 170 ± 12 11.46 ± 0.13 I
J0737+3216 0.322 0.581 14.10 338 ± 16 11.96 ± 0.07 I and V
J0946+1006 0.222 0.609 9.08 256 ± 21 11.59 ± 0.12 I
J0956+5100 0.240 0.470 8.58 338 ± 15 11.81 ± 0.08 I and V
J0959+4416 0.237 0.531 7.27 248 ± 19 11.72 ± 0.12 I
J1023+4230 0.191 0.696 5.97 247 ± 15 11.57 ± 0.12 I
J1205+4910 0.215 0.481 9.04 282 ± 13 11.72 ± 0.06 I and V
J1430+4105 0.285 0.575 10.41 325 ± 32 11.93 ± 0.11 I
J1627−0053 0.208 0.524 6.87 295 ± 14 11.70 ± 0.09 I and V
J2238−0754 0.137 0.713 5.78 200 ± 11 11.45 ± 0.06 I and V
J2300+0022 0.228 0.463 6.88 284 ± 17 11.65 ± 0.07 I and V

function (source based rather than lensed based). Moreover, since
the amount of substructure in lens galaxies can significantly de-
pend on the properties of the host galaxy (e.g. Xu et al. 2013), by
limiting our sample to the SLACS lenses, we can avoid possible
issues related to trends of the substructure mass fraction with the
host redshift and mass.

3 A NA LY SIS OV ERV IEW

We summarize here all of the steps involved in our analysis and we
refer to the following sections and to Koopmans (2005) and Vegetti
& Koopmans (2009a,b) for details on the lens modelling technique
and the statistical inference on the substructure mass function:

(i) all of the lens galaxies in the sample are initially modelled
under the assumption of a smooth mass distribution with an elliptical
power-law density profile and with the inclusion of external shear
(Section 4.1);

(ii) for each lens, the smooth model is improved with linear and
localized potential corrections, which are examined for the presence
of mass substructures (Section 4.2);

(iii) all of the lens systems that have shown evidence for non-
negligible (at the 10σ level) potential corrections are remodelled
with the same smooth mass model family of step (i), plus one or
more mass substructures with a given analytical mass density profile
(Section 4.3);

(iv) for each lens we calculate the 10σ mass detection threshold
at each pixel in the lens plane and derive the mass sensitivity as a
function of image-plane position (Section 6.1, Fig. 1);

(v) we determine the joint likelihood for the set of detections and
non-detections and then transform it, in a Bayesian way, into poste-
rior probability density functions (PDFs) for the CDM substructure
mass fraction and mass function slope (Section 6.3, Fig. 2).

4 L E N S MO D E L L I N G T E C H N I QU E

The gravitational lens modelling is carried out in a three step pro-
cedure using the Bayesian grid-based technique of Vegetti & Koop-
mans (2009a). Below, we describe each step of this technique in
more detail.

Figure 1. Lowest detectable mass (in log [Mlow/1010 M�]) as function of
the substructure position for the lens system SDSS J0252+0039.

4.1 Smooth models

We assume the projected mass density profile of the lens to be well
described by an elliptical power-law distribution plus an external
shear, with a dimensionless surface density and Einstein radius
defined, respectively, as

κ(x, y) = κ0

(
2 − γ

2

)
qγ−3/2

2(q2(x2 + r2
c ) + y2)(γ−1)/2

(1)

and

Rein =
(

κ0(2 − γ /2)q (γ−2)/2

3 − γ

)1/(γ−1)

. (2)

For the isothermal case (γ = 2) this is the same expression intro-
duced by Kormann, Schneider & Bartelmann (1994). The normal-
ization κ0

(
2 − γ

2

)
qγ−3/2 is chosen such that the mass within the

tangential critical curve is independent of the axis ratios q for a
fixed velocity dispersion and to reduce the degeneracy between κ0

and the mass density slope γ . In the limit of a singular, spherical
(q = 1) and isothermal model, κ0 is the Einstein radius (in the units
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Figure 2. Joint probability P(α, f|ns, m, p) contours and marginalized prob-
abilities P(f|ns, m, p) and P(α|ns, m, p) assuming a uniform prior (blue lines)
and assuming a Gaussian prior in α (black lines). Contours (inside out) are
set at levels 	ln (P) = −1, −4, −9 from the peak of the posterior probability
density. The cross represents the prediction from the CDM model as derived
by Xu et al. (2013), the solid grey line is the range of mass fractions allowed
by flux-ratio anomalies in the multiply imaged quasar sample analysed by
Dalal & Kochanek (2002), while the results derived by Vegetti et al. (2010)
from the single detection in the lens system SDSS J0946+1006 with a uni-
form prior and with a Gaussian prior on the slope α are shown by the orange
and magenta points, respectively.

of x and y) of the model and is related to the 1-d velocity dispersion
of the singular isothermal sphere as defined in Binney & Tremaine
(1987).

The free parameters of this mass model are the mass density
normalization κ0, its position angle θ , the axis ratio q, the coordinate
centre x and y, the logarithmic slope γ , the external shear strength
� and its position angle �θ . The mass distribution is assumed to
have a negligible core radius (i.e. rc ≡ 0 arcsec).

4.1.1 Model optimization and inference

In this section, we shortly outline our Bayesian model inference.
Given the surface brightness distribution of the lensed images d
with noise n and an unknown source surface brightness distribution
s, the most probable a posteriori set of mass model parameters η =
{κ0, θ, q, x, y, γ, �, �θ } and the source regularization parameter λs

are obtained by solving the set of linear equations:

Mc (η, ψ) s = d + n. (3)

Here, Mc (η, ψ) is the response matrix and accounts for the linear
lensing operator and for the point spread function (PSF) blurring.
The lensing operator is a non-linear function of the parameters η via
the lensing potential ∇2ψ(x) = 2κ(x). In practice the above equa-
tions are solved by maximizing this posterior probability density
distribution:

P (λs, η | d,Mc,Rs) = P (d | λs, η,Mc,Rs)P (λs, η)

P (d |Mc,Rs)
. (4)

In the above expression, Rs encodes the source regularization form
(e.g. variance, gradient or curvature), the strength of which is set

by the source regularization level λs (see Koopmans 2005; Veg-
etti & Koopmans 2009a, for details on these operators). The op-
timization is performed in three separate steps: first, λs is kept
fixed at a relatively large value, such that the source model re-
mains relatively smooth, and P (η | λs, d,Mc,Rs) is maximized
by varying η; secondly, the lens parameters are kept fixed at
their most probable values found during the first step, while
P (λs | η, d,Mc,Rs) is optimized for the source regularization level
λs; finally, P (η | λs, d,Mc,Rs) is maximized again for the lens pa-
rameters with a source regularization level fixed at the most prob-
able value determined from the second step. In general, no further
iterations are needed.

At every step of the non-linear mass model optimization, the cor-
responding most probable source surface brightness distribution s is
obtained, under the assumption of Gaussian noise,1 by maximizing
the following probability density through the direct inversion of the
linear equation given in equation (3):

P (s | d, λsη,Mc,Rs) = P (d | s, η,Mc) P (s | λs,Rs)

P (d | λs, η,Mc,Rs)
. (5)

Specifically, the source surface brightness distribution is constructed
on a Delaunay tessellation with a resolution that is adaptive with
the lensing magnification and that is built by casting one pixel from
each contiguous block of nsrc × nsrc pixels from the image plane
to the source plane via the lens equation. The lower that nsrc is,
the higher the source grid resolution. The optimal (i.e. the one that
maximizes the evidence of the data given the model) number of
pixels as well as the best form of source regularization can be dif-
ferent from system to system (often depending on the smoothness
of the lensed images). For example, thin rings with a large dynamic
range in their surface brightness distribution often require a higher
source resolution (lower nsrc) and an adaptive source regularization
(i.e. a regularization that changes from pixel to pixel according to
the specific S/N) in order to fit all of the features in the image
structure. Similarly, Suyu et al. (2006) showed that different source
surface brightness distributions may require different forms of reg-
ularization. The best combination of nsrc and Rs for every lens is
determined by re-running the smooth lens three-step optimizing
procedure, described above, for an increasing number of grid pixels
and for different forms of regularization, either curvature or gradi-
ent, either adaptive or non-adaptive. While our choice of nsrc and
Rs does not significantly affect the recovered mass model parame-
ters, η, it can have a substantial effect on the level with which our
best model matches the original data. Different choices for these
parameters are compared in terms of the Bayesian evidence, which
allows us to objectively determine their optimal values. This over-
all procedure effectively removes any choice of the astronomer in
modelling these lenses that (unconsciously) influence the results.

4.2 Lens-potential corrections

The gravitational imaging technique allows the detection of mass
substructure in lens galaxies as linear localized and pixelized cor-
rections to the overall smooth analytic lens potential, as described
in Section 4.1 (Koopmans 2005; Vegetti & Koopmans 2009a).
Through a Gauss–Newton optimization scheme, the maximum a

1 The noise in each pixel includes background noise from the sky and the
electronics as well as shot noise. The DRIZZLE scale and PIXFRAC were chosen
so that the pixel-to-pixel correlations are very small.
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posteriori (MAP) corrected lens potential ψ(x) + δψ(x), is com-
puted for several levels of potential correction regularization, along
with the corresponding MAP source model, by solving the follow-
ing set of equations for r = (s, δψ):

P (r | d, λ, η,Mc,R) = P (d | r, η,Mc) P (r | λ,R)

P (d |λ, η,Mc,R)
. (6)

Here Mc is a function of ψ(x) (which is updated by δψ at every
iteration), and R and λ now include both the source and the potential
corrections regularization.

4.3 Clumpy models

Once potential corrections have been identified, their significance
can be quantified by comparing the marginalized Bayesian evi-
dences of the analytical smooth models with that of an analytical
clumpy model, i.e. a model made from the sum of a smooth host
gravitational lens galaxy and an analytical mass substructure (for
every potential correction that conservatively appear significant at a
few σ level). As in previous works (e.g. Dalal & Kochanek 2002),
we assume the substructure to have a spherical pseudo-Jaffe profile,
defined by the mass density,

ρ(r) = ρ0,sub

r2(r2 + r2
t )

, (7)

and surface mass density,

κ(R) = κ0,sub

2

[
R−1 − (R2 + r2

t )−1/2
]
, (8)

where ρ0,sub = κ0,sub�cr
2
t /2π and rt is the half-mass radius. As-

suming that the substructure is located in the plane of the sky that
passes through the lens galaxy centre, we can interpret the trunca-
tion radius, rt, as a tidal radius and express it as a function of the
substructure total mass Msub = π�crtκ0,sub. Under some approxi-
mations, the tidal radius can be expressed as

rt = r

(
Msub

βM(<r)

)1/3

. (9)

Here M(r) is the 3D mass of the host galaxy within the spherical
radius r and β is a factor which depends on the assumptions made,
for example, on the orbit and size of the satellite and the contribution
of centrifugal forces. If it is assumed that the gravitational potential
of the satellite and the host are both given by point masses and that
the satellite is small compared to its distance from the centre of the
host, then β = 2 (Roche limit). If the contribution of centrifugal
forces is included and if it is assumed that the satellite is on a circular
orbit then β = 3 (Jacobi limit). Finally for extended mass profiles,
without the contribution of centrifugal forces and generic orbits,
β = 2 − d ln M/d ln r (Tormen et al 1998, β = 1 for a SIS).

For a pseudo-Jaffe substructure in a spherically symmetric
isothermal galaxy, with mass normalization κ0, the truncation radius
in arcseconds is therefore rt = r

√
πκ0,sub/(2βκ0), which reduces

to rt = √
πκ0,subκ0/(2β) if the substructure is located at the Ein-

stein radius of the lens. In addition to the free parameters defined
in Section 4.1, the free parameters of the clumpy model now also
include the substructure position and mass. In order to allow for
a proper comparison, we use the same source regularization form
and the same number of pixels nsrc characterizing the source grid
that we used for the smooth model analysis. The posterior proba-
bility density distribution P (λs, η | d,Mc,Rs), is now maximized
for η = {κ0, θ, q, x, y, γ, �, �θ ,Msub, xsub, ysub} and λs, following
the same three-step procedure outlined above. This analytic clumpy

model can also be used to assess the significance of the substructure
detection via the total marginalized Bayesian evidence, as described
in the following section.

4.4 Model comparison

The marginalized Bayesian evidence is a measure of the probability
of the data given the model, and provides an objective and quantita-
tive way to compare and rank different models. In our specific case,
this marginalized evidence, E , can be expressed as the integral of
the normalization factor in equation (5) over the lens parameters η

and the source regularization λs, such that

E = P (d |Mc,Rs)=
∫

dλs dη P (d | λs, η,Mc,Rs)P (λs, η). (10)

P (d |Mc,Rs) can then be turned into a probability density of the
model itself using

P (Mc,Rs | d) ∝ P (d |Mc,Rs)P (Mc,Rs). (11)

The integral of equation (10) is calculated numerically with the
MULTINEST method by Feroz & Hobson (2008), which is based on
the original nested sampling idea by Skilling (2004). The method
requires a defined prior probability density distribution P (λs, η) for
each of the parameters. Given our limited knowledge, we assume
uniform prior distributions on η and on log λs. These priors are
the same for both the smooth and the clumpy models. For the
substructure mass and position in the clumpy models, we assume a
uniform prior between 4 × 106 and 4 × 1010 M�, and a uniform
prior inside the lensed image grid, respectively. Note that in the
analysis presented in Section 6, we effectively update the prior on the
mass by including both the sensitivity function and the substructure
mass function.

5 L E N S MO D E L L I N G R E S U LT S

In this section, we provide more detailed comments on the indi-
vidual systems and give comparisons with previous results where
appropriate.

5.1 Smooth models

The MAP models under the assumption of a smooth mass distribu-
tion are listed in Table 2 for each system and plotted in Figs 3–12.
Models for SDSS J0946+1006 can be found in Vegetti et al. (2010).
Smooth models for all of the SLACS lenses, under the assumption
of a singular isothermal elliptical (SIE) mass distribution, were de-
rived by Bolton et al. (2008a) (see also Auger et al. 2009), while
for a subset of the lenses considered here, a joint lensing and 2D
kinematics analysis can be found in the paper by Barnabè et al.
(2011). A measure of the slope of the mass density profile γ was
also derived by Koopmans et al. (2009) and Auger et al. (2010),
using a combination of lensing and the stellar velocity dispersion
for each galaxy. We note that the comparison between our results
and those by Koopmans et al. (2009), Bolton et al. (2008a) and
Barnabè et al. (2011) is not a straightforward one and that agree-
ment should not be necessarily expected. For example, the mass
density slope derived in this paper is a measure of the local slope
near the Einstein radius and could be therefore different from the
average mass density slope measured by Koopmans et al. (2009)
and Barnabè et al. (2011), which are mostly set to fit the dynamical
data (see discussion by Sonnenfeld et al. 2013). We do find that the
Einstein radius derived in this paper is for every lens consistent with
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2022 S. Vegetti et al.

Table 2. The best-fitting (i.e. MAP) parameters for our smooth reconstruction lens models. The mass model parameters are defined as follows:
κ0 is the normalization, θ the position angle, q the axis ratio and γ the power-law slope. � and �θ are, respectively, the magnitude and the
position angle of an external shear component. The number nsrc of pixels characterizing the source grid and the form of source regularization
are given in columns 9 and 10, respectively. C is the curvature regularization and G is the gradient regularization; the subscript ‘adp’ is used to
indicate cases where the source regularization is adaptive with the lensed images S/N.

Name (SDSS) Filter κ0 θ (◦) q γ � �θ (◦) nsrc Rs

J0252+0039 I 1.022 116.2 0.943 2.047 0.009 101.8 1 Gadp

J0737+3216 I 0.951 98.31 0.705 2.066 0.050 100.8 1 C
V 0.951 97.18 0.709 2.073 0.052 102.5 2 Gadp

J0956+5100 I 1.260 144.9 0.656 2.060 0.037 140.3 2 C
1.68a

V 1.253 145.6 0.651 2.062 0.035 139.0 2 C
1.93a

J0959+4416 I 0.902 95.06 0.955 2.060 0.033 65.67 2 Cadp

J1023+4230 I 1.329 157.9 0.926 2.286 0.050 174.4 2 Cadp

J1205+4910 I 1.199 153.0 0.706 2.047 0.025 172.7 1 Cadp

V 1.197 152.9 0.706 2.044 0.027 173.6 1 Cadp

J1430+4105 I 1.484 106.5 0.710 2.048 0.051 128.6 1 C
J1627−0053 I 1.229 9.260 0.912 1.998 0.004 79.96 2 Cadp

V 1.212 9.202 0.869 2.058 0.014 87.76 2 Cadp

J2238−0754 I 1.241 139.9 0.786 2.121 0.009 78.40 1 Gadp

V 1.243 139.2 0.780 2.117 0.009 80.93 2 Cadp

J2300+0022 I 1.196 77.49 0.694 2.131 0.048 109.4 2 C
V 1.201 84.09 0.687 2.130 0.042 102.8 2 C

aTotal mass of the luminous satellite in units of 1010 M�, for a pseudo-Jaffe profile.

Figure 3. Best smooth models for the lens gravitational system J0252+0039 observed with HST in the F814W filer.

those determined by Bolton et al. (2008a), although our lenses are
often not (but close to) isothermal.

The lens system SDSS J1430+4105 was modelled by Eich-
ner, Seitz & Bauer (2012) by making use of different assump-

tions on the mass model for the main lens and its environ-
ment, and providing consistent results within the error among
several models. Here, we can only directly compare with the
power-law plus external shear model from Eichner et al. (2012)
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CDM substructure mass function at z = 0.2 2023

Figure 4. Same as Fig. 3 for J0737+3216 as observed in the HST F814W filter (top) and in the HST F555W filter (bottom).

derived by modelling the surface brightness distribution of the
lensed images with the lensing code LENSVIEW (Wayth & Web-
ster 2006). We find that the Einstein radius derived in this
paper is ∼1 per cent smaller than their Einstein radius, while our
mass distribution has an axis ratio which is ∼15 per cent smaller
and a mass density slope which is ∼10 per cent steeper. Finally,
the external shear strength is ∼8 per cent larger than the value

recovered by Eichner et al. (2012) and its position angle is not
consistent with their model, but it is consistent with the location
of the brightest cluster galaxy of the lens environment (Koester
et al. 2007). These differences are consistent with the scatter on
the lens parameters derived by Eichner et al. (2012) under different
model assumptions. We believe that they are related to a different
choice of the surface mass density normalization, which in our case
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2024 S. Vegetti et al.

Figure 5. Same as Fig. 3 for J0956+5100 as observed in the HST F814W filter (top) and in the HST F555W filter (bottom).

explicitly encodes the mass distribution axis ratio and logarithmic
slope (equation 1). Also, the power-law plus external shear model
by Eichner et al. (2012) does not seem to recover the external shear
correctly.

In the case of SDSS J0956+5100 a luminous companion
was identified in the HST images. This luminous satellite was
included in the lens model as an additional mass component
with a truncated pseudo-Jaffe (see equation 8) mass density
profile.

5.2 Potential corrections and clumpy models

We claim the presence of a substructure detected at a significant
statistical level when the following conditions are simultaneously
satisfied:

(i) a positive convergence correction that improves the image
residuals is found independently from the potential regularization,
number of source pixels, PSF rotations and galaxy subtraction pro-
cedure;
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CDM substructure mass function at z = 0.2 2025

Figure 6. Same as Fig. 3 for J0959+4416.

Figure 7. Same as Fig. 3 for J1023+4230.

(ii) a clumpy model is preferred over a smooth model with a
Bayes factor 	 log E = log Esmooth − log Eclumpy ≥ −50 (to first or-
der equivalent to a 10σ detection, under the assumption of Gaussian
noise);

(iii) the mass and the position of the substructure obtained via
the nested sampling analysis are consistent with those indepen-
dently obtained by the potential corrections and the MAP parametric
clumpy model;
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2026 S. Vegetti et al.

Figure 8. Same as Fig. 3 for J1205+4910 as observed in the HST F814W filter (top) and in the HST F555W filter (bottom).

(iv) the results are consistent among the different HST filters,
where available.

We find that none of the systems considered in this paper satisfies
the above conditions, implying that no significant detection of a
mass substructure was made above the mass threshold set by the
S/N and resolution of the HST images. Importantly, we notice that

some lenses satisfy the condition (ii) without satisfying conditions
(iii) and (iv). We believe that this is due partly to degeneracies in
the lens model parameters, a relatively poor fitting of the smooth
model and the fact that only a clumpy model was considered as
an alternative to the smooth one. Generalizing, we stress that is
important to verify the uniqueness of the substructure detection by
taking fully into account the degeneracies with the macromodel and
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CDM substructure mass function at z = 0.2 2027

Figure 9. Same as Fig. 3 for J1430+4105.

the source model and by testing other models than clumpy ones as
an alternative to smooth models, both with gravitational imaging
and with flux ratio anomalies.

5.2.1 SDSS J0956+5100

For the case of SDSS J0956+5100, since the luminous satellite
was explicitly included as part of the smooth model, this implies
that no substructure other than the luminous satellite was found.
By repeating the analysis of this lens without the inclusion of the
luminous satellite, we find that this satellite is also detected via the
gravitational imaging technique in both I and V bands at the ∼37σ

and ∼20σ level, respectively. Including our previous detection in
SDSS J0946+1006 (Vegetti et al. 2010), we detected in total, two
satellites in 11 gravitational lens systems. In both cases the satellites
have a projected distance of about ≤5 kpc from the centre of the
host galaxy. Although we do not know its redshift, the colours of
this luminous clump are consistent with those of the lens galaxy,
indicating that it is most likely a satellite. By fitting the surface
brightness of this satellite with a Gaussian profile, we find that the
total magnitude is 22.70 and 22.93 in I- and V band, respectively,
which is about 6 mag fainter than the host galaxy. From Auger
et al. (2009) we derive a stellar mass of M∗ = 1.4 × 109 M�
for a Chabrier initial mass function and M∗ = 2.5 × 109 M� for
a Salpeter one. Under the assumption of a Pseudo-Jaffe total mass
density profile, we infer a total mass of Msub = (1.69 ± 0.01) × 1010

and (1.89 ± 0.05) × 1010 M� in I- and V band, respectively. This
yields a stellar- to total-mass ratio of ∼10, which is not unexpected
considering that the satellite has probably been significantly tidally
stripped. Finally, we note that the MAP position is located in both
bands offset from the centre of the light distribution by 3 pixels
(0.15 arcsec) in the x direction and 8 pixels (0.4 arcsec) in the y
direction.

5.2.2 SDSS J0946+1006

Vegetti et al. (2010) reported the detection of a dark-
matter-dominated substructure in the gravitational lens system
SDSS J0946+1006. When modelled as a pseudo-Jaffe profile, the
total mass of this substructure was inferred to be Msub = (3.51 ±
0.15) × 109 M�. The substructure was located very close to the
Einstein radius but in a position where the surface brightness is not
dominated by the lensed images. This allowed a tight constraint to
be set on the upper limit of the substructure luminosity, hence its
mass-to-light ratio lower limit is (M/L)V, � ≥ 120 M�/LV, � (3σ )
inside a sphere of radius 0.3 kpc.

5.2.3 Systematic error on the substructure masses

The major source of systematic error on the substructure total mass
is related to the de-projection of the substructure position. In par-
ticular, we have assumed that the detected mass substructure and
satellites are at the same redshift as the lens galaxy, and when
using a pseudo-Jaffe profile, that the observed projected position
is the true physical position. As discussed previously, in the case
of SDSS J0956+5100, the luminous satellite has colours consistent
with the lens galaxy redshift. The mass clump in SDSS J0946+1006
is a high mass-to-light ratio object for which direct light was not
detected and colours could not be measured. In principle, we can
estimate the probability that this clump is at the same redshift of
the lens galaxy by making use of numerical simulations, in prac-
tice however, current N-body simulations of massive galaxies do
not reach the necessary resolution, especially at distances so close
to the centre of the host halo. Moreover, one would need to take
into account for the different lensing effects of clumps at different
redshifts. This can significantly depend on the density profile that
is assumed and, in the case of extended lensed images, it cannot
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2028 S. Vegetti et al.

Figure 10. Same as Fig. 3 for J1627−0053 as observed in the HST F814W filter (top) and in the HST F555W filter (bottom).

be computed by linearly rescaling the clump mass. These are all
important issues that we will extensively address in a future paper.

Here we limit ourselves to the assumption that the clump de-
tections are indeed substructure and quantify the systematic error
on their mass due to de-projection within the host galaxy, under
the assumption of an isothermal spherically symmetric host galaxy.
Making use of Bayes theorem we can express the probability den-
sity of the substructure position r in 3D, given an observed projected

position R as (Suyu & Halkola 2010)

P (r|R) = P (R|r)P (r)

P (R)
= 1

r
√

r2/R2 − 1 arccos[R/rmax]
. (12)

Following the results by Nierenberg et al. (2011, 2012), we assume
that the 3D spatial distribution of the satellites follows the total
mass distribution of the host galaxy. To normalize P(r), we impose
that the total mass density profile of the host galaxy goes to zero
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CDM substructure mass function at z = 0.2 2029

Figure 11. Same as Fig. 3 for J2238−0754 as observed in the HST F814W filter (top) and in the HST F555W filter (bottom).

at an arbitrarily large radius well beyond the lensed images (e.g.
r > rmax ∼ 100 arcsec) and at r < R. For a pseudo-Jaffe profile,
we can express the total mass as a function of the position r by
combining the expression of the total mass Msub = π�crtκ0,sub with
the expression for the tidal radius (equation 9). From this we derive
the probability density for a given substructure mass

P (Msub|R) = 1

Msub

√
2M2

subβκ0

R2κ3
subπ3�2

c
− 1 arccos[R/rmax]

(13)

for R�c

√
(πκsub)3

2βκ0
≤ Msub ≤ rmax�c

√
(πκsub)3

2βκ0
and zero otherwise.

This leads to a probability density for the substructure mass that is
strongly peaked at the value measured under the assumption r ≡ R.
We derive that de-projection effects lead to an error on the logarith-
mic substructure mass of σMsub =+1.17

−0.17 and +1.11
−0.16 at the 68 per cent

CL for SDSS J0946+1006 and for SDSS J0956+5100, respec-
tively. These uncertainties can be quite large since the extrapola-
tion from the lensing mass to the total mass significantly increases
with the distance of the substructure from the plane of the lens;

MNRAS 442, 2017–2035 (2014)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/442/3/2017/1048278 by U
niversity of G

roningen user on 15 N
ovem

ber 2018



2030 S. Vegetti et al.

Figure 12. Same as Fig. 3 for J2300+0022 as observed in the HST F814W filter (top) and in the HST F555W filter (bottom).

nevertheless, masses within small apertures (e.g. 300 pc) are still
precisely determined.

6 SUBSTRUCTURE MASS FUNCTION

In this section, we use the results of this paper, in combination
with the mass substructure detected by Vegetti et al. (2010), to con-
strain the substructure mass function slope and normalization. For
this purpose, we assume that the detected mass density corrections

are due to mass clumps associated with the lens galaxy, and not
with line-of-sight contaminations. In the latter case, the inferred
substructure fractions in the galaxy would decrease. Although only
one out of 11 lens galaxies shows evidence for mass substructure,
the remaining 10 non-detections also provide valuable information
on the mass function, once the sensitivity to substructure for each
lens galaxy has been quantified. For each lens in the considered
sample, we quantify the substructure sensitivity in the following
subsection.
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CDM substructure mass function at z = 0.2 2031

6.1 Substructure sensitivity function

Vegetti & Koopmans (2009b) and Vegetti et al. (2010, 2012) as-
sumed that the sensitivity to substructure was constant (i.e. it only
depended on the substructure mass but not its position) over an an-
nulus of a few arcseconds width around the Einstein radius and that
substructures were randomly distributed within this annulus with
a uniform probability density distribution. In practice, this means
assuming a constant value for the lowest detectable substructure
mass within the considered region. In this paper, we quantify the
sensitivity to substructure for each lens system in the considered
sample as a function of the substructure position and mass. This
is particularly important to properly take into account for the large
number of non-detections.

As shown by Koopmans (2005) and Vegetti & Koopmans
(2009a), the effect of a potential correction on the surface bright-
ness distribution of the lensed images is given by δI (x) = ∇S( y) ·
∇δψ(x), where δI (x) is the difference in the surface brightness dis-
tribution of the lensed images between a smooth lens and a model
that contains substructure, ∇S( y) is the gradient of the source sur-
face brightness distribution and ∇δψ(x) is the gradient of the poten-
tial correction δψ(x). For a given substructure, therefore, its effect
is different on different parts of the lensed images and larger on
those parts which are more structured (see Rau, Vegetti & White
2013). This, in combination with the fact that the effect of a sub-
structure can be partly re-absorbed with a change of the source
surface brightness structure and/or with a change in the lens macro-
model, implies that the most rigorous way to quantify the sensitivity
to a given substructure is via the probability density of a specific
substructure model given the data, marginalized over all possible
macromodel parameters and source regularization constant (i.e. via
equation 10). This would require one to compute the Bayes factor
and marginalize over the lens parameters and source parameters
for a large number of clumpy models, each defined by a differ-
ent combination of substructure mass and position (ideally one for
every image pixel). However, this approach is computationally pro-
hibitive, and the MULTINEST technique does not sample the posterior
probability density distribution densely enough to allow us to derive
the sensitivity function directly from the analysis of Section 4.4. At
the same time, we find that most of the re-absorption is done by
changes in the source surface brightness distribution rather than
changes in the macromodel parameters. We can therefore reduce
the multidimensional integral of the Bayesian evidence to a one-
dimensional integral over the source regularization constant, while
keeping the lens (and substructure) parameters fixed. Because this
integral implicitly involves also an integral over the source surface
brightness distribution via equation (4), it properly takes into ac-
count for the degeneracy between the substructure properties and
the structure of the source. We, therefore, properly quantify the
sensitivity function by creating 100 Npix mocked lens realizations,
each of which is based on the most probable smooth lens model and
most probable source model as derived in Section 4.1, and has a
substructure of given mass between 4 × 106 and 4 × 1010 M� (uni-
formly sampled in log-scale) and located at one of the image pixels.
This assumes that we are not sensitive to changes in the substructure
position within a single pixel. For each of these realizations, we then
compute the marginalized Bayesian evidence under the assumption
of a smooth and a clumpy lens model and define the mass detection
threshold at each position on the lens plane as the lowest mass for
which the Bayes factor is 	 log E ≥ −50 (see Fig. 1), as this would
correspond to a 10σ detection, under the assumption of Gaussian
noise. We find that given the data quality of the sample in this pa-

per, the lowest detectable mass typically varies on average between
0.04 × 1010 and 0.14 × 1010 M� depending on the lens. In some
cases, for specific substructure positions the detection threshold,
however, can be as low as 0.01 × 1010 M�.

Because this approach is still relatively computationally expen-
sive, one may be tempted to quantify the effect of substructures by
using the difference in the lensed images surface brightness distribu-
tion (i.e. the image residuals) of different clumpy models relatively
to a smooth model via the following χ2 instead,

D =
∑

x

(
Ismooth(x) − Iclumpy(x)

σ (x)

)2

. (14)

Using mock data realizations one could then translate a detection
threshold on D into a substructure mass Mlow(x) detectable at the
10σ level, as a function of the lensed images and substructure
position. However, we caution that this simplistic approach does
not take into account for the degeneracies described above and that
may lead to an overestimation of the sensitivity function. In order to
highlight the approximation of this approach, we calculate D for the
same 100 Npix mocked lens realizations described above under the
assumption of a smooth and clumpy model. We find that although
the likelihood ratio is not significantly affected by changes in the
lens parameters and source surface brightness distribution, the two
models are practically indistinguishable in terms of their posterior.
This clearly indicates that re-absorption of the substructure effect
by changing the source and the lens model has a significant influence
on the significance of a substructure detection. In the light of these
considerations, we caution therefore that substructure detections
based only on likelihood ratio tests or equivalently on χ2 difference
criteria should not be necessarily believable. Moreover, in cases with
a large number of non-detections, such as the one considered in this
paper, this can significantly bias constraints on the mass function
parameters. We find that the lowest detectable substructure mass as
properly derived above can be up to two orders of magnitude larger
than the limit obtained using equation (14), due to the fact that the
effects of such low-mass structures can quite easily be absorbed in
a small change to the source model.

Finally, we note that re-absorption effects were properly taken
into account in the detection of the mass substructure in the lens sys-
tem SDSS J0946+1006, as its significance was properly calculated
via the integral in equation (10). We refer to Vegetti et al. (2010)
for a more detailed discussion on this particular lens systems.

6.2 Likelihood of substructure detections

A statistical formalism to turn ns substructure detections (each with
mass ms and position Rs) and non-detections into constraints on
the substructure mass function was derived by Vegetti & Koop-
mans (2009b). In particular, a posterior probability density dis-
tribution P (α, f |{ns, ms, Rs}, p) for the mass function slope α

and normalization f (i.e. the projected fraction of dark matter mass
in substructure within the considered region around the Einstein
radius, see below for a definition of this region) was derived.
P (α, f |{ns, ms, Rs}, p) is related, via the Bayes theorem, to the
likelihood L ({ns, ms, Rs}) of detecting a certain number ns of sub-
structures of given masses m and to the prior probability density
distribution on both α and f. This approach also requires the cu-
mulative projected dark matter mass of the host lens galaxy to be
known. We extend the formalism presented by Vegetti & Koopmans
(2009b) for the case of a substructure mass detection threshold that
changes with the considered lens system and with the position of the
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2032 S. Vegetti et al.

substructure on the lens plane. By assuming that the number of sub-
structures has a Poisson distribution, the following expression for
the likelihood of detections L ({ns, ms, Rs}) can be derived for one
lens, ns detections and model parameters p = {Mmin, Mmax, Mlow}
(minimum substructure mass, maximum substructure mass, lowest
detectable substructure mass):

L ({ns, ms, Rs} | α, f (< R), p)

= e−μ(α,f , p) μ(α, f , p)ns

ns!

ns∏
k=1

P (mk,Rk | p, α) . (15)

Here μ(α, f (< R), p) = ∑Npix
j=1 μj (α, f , p) is the total expectation

of substructures with masses larger than the detection threshold
summed over the number of pixels on the lens plane within the
considered region, and μj (α, f , p) is given by

μj (α, f , p) = μ0,j (α, f , p)
∫ Mmax

Mlow,j

P
(
m, Rj | p, α

)
dm

= μ0,j (α, f , p)
∫ Mmax

Mlow,k

dP

dm
dm (16)

for⎧⎪⎪⎨
⎪⎪⎩

μ0,j (α, f , p) = fj MDM(<R)∫ Mmax
Mmin

m dP
dm dm

,

fj = f (<R)
Npix

(17)

and

dP

dm
=

⎧⎪⎨
⎪⎩

(1−α) m−α(
M1−α

max − M1−α
min

) α �= 1,

m−α

ln (Mmax/Mmin) α = 1.

(18)

For each detected substructure, P (mk, Rk | p, α) is the probability
density of observing one substructure with mass within the Einstein
radius mk and observed projected position Rk. This probability den-
sity can be derived from the unknown 3D total mass m and position
r by assuming a 3D spatial distribution of the substructure, P(r)
and related projection effects via P(R|r). As in Section 5.2.3, we
assume the substructure spatial distribution to follow the isother-
mal host galaxy total mass density distribution (see Nierenberg et al.
2011, 2012; Wang et al. 2014 and references therein for an overview
on observational and theoretical constraints) and obtain

P (mk, Rk | p, α)

=
∫ Mmax

Mlow,k

∫ rmax

Rk
N (mk, σmk

|me)m−αP (Rk|r)P (r) dm dr∫ Mmax

Mmin

∫ rmax

Rk
N (mk, σmk

|me)m−αP (Rk|r)P (r) dm dr
, (19)

where me is the predicted mass within the Einstein radius and is a
function of the total 3D mass and the 3D position r. It is important
to note that we are not interested here in constraining the mass
function of each single lens galaxy and that the fraction f and the
slope α are therefore defined at the galaxy population level instead.
In practice, this means that the galaxy/subhalo systems are assumed
to be self-similar and all following the same mass function. Since
we are considering a sample of 11 galaxies with a narrow range
in mass and redshift, we can consider the above assumption valid.
In particular, f is defined as the mean projected mass fraction for
substructure masses between Mmin = 4 × 106 M� and Mmax =
4 × 109 M�.

6.2.1 Considered region

Given a substructure mass, its effect on the surface brightness of the
lensed images is a function of the substructure distance from the
lensed images, the data angular resolution and S/N, and the level
of structure of the source surface brightness distribution. Thus, for
a given data quality (S/N and angular resolution) the gravitational
effect of a mass substructure is maximized when located right on
top of the lensed images of a highly structured source. We therefore
restrict our measurement of the mass function to a small region
where the S/N of the data surface brightness distribution is larger
than 3. This approximately corresponds to a small area around
the critical curve that can vary between ∼4 and ∼200 kpc2 (i.e.
between 2 and 13 arcsec2) around the lensed images. In this way, we
are only considering substructure positions where the effect of the
substructure is large and unlikely to be re-absorbed by changes in
the lens macromodel. We note that this region does not include the
luminous satellite of SDSS J0956+5100, after having subtracted
the light from the satellite itself, hence this luminous satellite is
not included in the Bayesian inference of the substructure mass
function.

Our mass function constraints are therefore solely derived by
making use of the substructure detected in SDSS J0946+1006
and the 10 other non-detections. We note that changes in the win-
dow in which we allow a detection does not bias the inference
since we properly account for the mass detection threshold and
dark matter mass inside the window. Shrinking the window, how-
ever, does lower the detection probability, increasing the error bars.
But, since the expectation value of the number of substructures
(per unit area) strongly peaks around the lensed images, the precise
window choice (if not too small) has little impact and choosing
it relatively narrow significantly reduces the computation effort in
deriving the mass thresholds as a function of position in the image
plane.

6.2.2 Lens galaxy dark matter mass

Vegetti & Koopmans (2009b) and Vegetti et al. (2010, 2012) calcu-
lated the host lens galaxy dark matter mass assuming an isothermal
total mass density distribution, a Jaffe profile for the stellar mass
distribution and the scaling relations derived for the SLACS lenses
by Bolton et al. (2008b). Here, we make use instead of the dark
matter fraction derived by Auger et al. (2010). In particular, we
evaluate the de Vaucoleurs surface brightness profiles from Bolton
et al. (2008b) and Auger et al. (2009) at the Einstein radius and then
multiply by the mass-to-light ratio implied by Auger et al. (2009)
under the assumption of a Salpeter initial mass function (consistent
with results from lensing and dynamics, stellar population models
and stellar kinematics; e.g. Auger et al. 2010; Treu et al. 2010;
Spiniello et al. 2011; Cappellari et al. 2012; Barnabè et al. 2013).
The dark matter mass within the considered region is then calcu-
lated by subtracting the stellar mass so derived from the total mass
measured with the gravitational lens modelling.

6.3 Posterior probability of α and f

The Bayes theorem can then be used to derive a joint poste-
rior probability density function for the mass function slope and
normalization:

P (α, f |{ns, ms, Rs}, p)

= L ({ns, ms, Rs}|α, f , p) P (α, f | p)

P ({ns, ms, Rs}| p)
, (20)
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where P (α, f | p) = P (α| p) P (f | p) is the prior probability den-
sity on the relevant parameters. We assume the normalization f to
have a non-informative Jeffreys’ prior probability density distribu-
tion (Jeffreys 1946) between fmin = 0 and fmax = 1:

P (f ) = 1

2
(√

fmax − √
fmin

) √
f

. (21)

Two different priors are considered for the slope α instead; in the
first case we assume a non-informative uniform prior density dis-
tribution, between αmin = 0 and αmax = 3, in the second case we
assume a Gaussian prior centred on αmean = 1.9 and with a full
width at half-maximum (FWHM) of σα = 0.1, as suggested by
N-body simulations (Springel et al. 2008; Xu et al. 2013):

PU (α) = 1

αmax − αmin
(22)

and

PG (α | p) = 1

σα

√
2π

exp

[
− (α − αmean)2

2σ 2
α

]
. (23)

6.4 Results

In this section, we use the non-detections obtained in this paper
in combination with the previously reported detection in the lens
system SDSS J0946+1006 to derive statistical constraints on the
substructure mass function within a region of about 32 kpc2 on
average around the Einstein radius, for substructure masses between
4 × 106 and 4 × 109 M�. The results of this analysis are shown in
Fig. 2.

For a uniform prior probability density on α, we find a mean
substructure projected mass fraction of f = 0.0076+0.0208

−0.0052 at the
68 per cent CL and a substructure mass function slope α <2.93 at
the 95 per cent CL. For a Gaussian prior of mean 1.9 and standard
deviation 0.1, we infer a fraction of f = 0.0064+0.0080

−0.0042 and a slope
of α = 1.90+0.098

−0.098 at the 68 per cent CL (see Table 3).
With a Bayes factor of 2 × 	 ln E = 0.36, we find that there

is no positive preference for the model with a uniform prior on
the slope (Kass & Raftery 1995). This reflects the fact that with
only one detection we have poor constraints on the mass function
slope, hence only an upper limit is derived. The mass fraction is
instead constrained at the lower limit by the single detection and
at the upper limit by the non-detections. These results are robust
against assumptions on the prior probability density P( f). Thanks to
the larger sample of lenses considered in this paper, we can derive
tighter constraints on the substructure mass fraction than previously
obtained. However, owing to the large number of non-detections,
potentially related to the rather low sensitivity of the data analysed
here, we still suffer from a large uncertainty on the substructure
mass function slope.

Since detailed studies of the luminous satellites of SLACS lens
galaxies have shown that the substructure found in lenses is rep-
resentative of that measured around non-lens galaxies (Jackson

Table 3. Mass function constraints: substructure and mass function
normalization and slope for a uniform (U) and a Gaussian (G) prior
on the slope, with relative marginalized evidence in the last column.

P(α) f (68 per cent CL) α ln Ev

U 0.0076+0.0208
−0.0052 <2.93 (95 per cent CL) −5.98

G 0.0064+0.0080
−0.0042 1.90+0.098

−0.098 (68 per cent CL) −6.13

et al. 2010; Nierenberg, Oldenburg & Treu 2013b) we are confident
that our results can be generalized to the massive elliptical galaxy
population.

7 D I S C U S S I O N A N D C O N C L U S I O N S

Vegetti et al. (2010) reported from the analysis of the single de-
tection in the lens system SDSS J0946+1006 a substructure mass
fraction of f = 0.0256+0.0326

−0.0150 and 0.0215+0.0205
−0.0125 for a uniform prior

and a Gaussian prior on α, respectively. This is higher but consis-
tent within the error with the fraction reported in this paper. The
mean value of our current analysis is lower due to the large num-
ber of non-detections which tightly constrains the fraction upper
limit. From the joint analysis of the lens system SDSS J0946+1006
and B1938+666, Vegetti et al. (2012) derived instead a fraction of
f = 0.039+0.036

−0.024 and 0.015+0.015
−0.009, for a uniform prior and a Gaussian

prior on α, respectively. This results is also larger but consistent
with our constraints and this difference is also due to the differ-
ent number of detections and non-detections considered. Thanks
to a larger number of detections, Vegetti et al. (2012) were also
able to set a constraint on the mass function slope, α = 1.0+0.8

−0.1.
In this paper, we have not included the detection in the lens sys-
tem B1938+666 in order to keep the lens sample uniform in both
lens galaxy mass and redshift. In the future, larger samples of
strong gravitational lens galaxies will allow us to constrain the
substructure mass function as a function of the host galaxy mass and
redshift and to tightly constraint both the mass function slope and
normalization.

Our current results imply a fraction which is consistent within the
error with the mass fraction derived by Dalal & Kochanek (2002)
(0.006 < f < 0.07) using measurements of flux-ratio anomalies in
multiply imaged quasars. It should be kept in mind, however, that
the lens sample analysed by Dalal & Kochanek (2002) has a mean
redshift of 0.6, hence a larger mass fraction should be expected
relatively to our z = 0.2 sample (Xu et al. 2013).

Using rescaled versions of the Aquarius (Springel et al. 2008)
and Phoenix simulations (Gao et al. 2012), Xu et al. (2013) have
explored the effect of mass substructure on the flux ratio of multi-
ply imaged quasars in galaxies with masses, ellipticity and redshift
comparable to the observed lens galaxy population. While the effect
of substructures on the flux of point sources is different from their
effect on the surface brightness distribution of extended sources
(the former is a function of the second derivative of the potential,
while the latter is a function of its first derivative) we can still use
some of the Xu et al. (2013) results to compare our findings with the
expectations from the CDM model. In particular, Xu et al. (2013)
have found the number density of subhaloes in the inner regions
of the host haloes to be constant and the subhaloes surface mass
density to be roughly 4.72 × 106 h−1 M� (h−1 kpc)−2, for subhalo
masses between 5.48 × 106 and 5.48 × 109 M� h−1, a host halo
mass of about 1013 h−1 M� and a host halo redshift of z = 0.2. This
implies an average substructure mass fraction of fCDM ≈ 0.0046, for
substructure masses between 4 × 106 and 4 × 109 M� and for sub-
structure positions within the same regions considered in this paper.
This is consistent with our results at the 68 per cent CL. We caution,
however, that higher quality data are required in order to extend our
measurements to lower substructure masses (Lagattuta et al. 2012;
Vegetti et al. 2012), where larger discrepancies between the data
and the model are expected. Also, high-resolution hydrodynamical
numerical simulations are required for a proper comparison that
takes into account for the effect of baryons on the survival of mass
substructure within massive host galaxies.
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Vegetti et al. (2012) have shown that the substructure mass de-
rived under the assumption of a pseudo-Jaffe profile is consisted
with the mass derived from the pixelized density corrections. This
clearly indicates that the measured substructure mass is a robust
quantity that is not significantly affected by the choice of mass
profile. Using mock observations of the lens system B1938+666,
Vegetti & Vogelsberger (2014) have shown that the assumed profile
does not lead to a measurement error on the lensing mass, but that
profiles with too low concentrations would not be detectable with
the gravitational imaging technique. In practice, this implies that
while the detections are not affected by the choice of mass profile,
the interpretation of the non-detections could be profile dependent.
This is an important issue and in a future paper we will thoroughly
investigate the potential biases related to assumptions on the sub-
structure mass profile in different observational scenarios. Vegetti
et al. (2010, 2012) have shown instead that the galaxy subtraction
procedure does not affect the substructure detections and their in-
terpretation.

In conclusion, we have applied the gravitational imaging tech-
nique by Vegetti & Koopmans (2009a) to a sample of 11 grav-
itational lens galaxies from the SLACS survey with the aim of
constraining the substructure mass function for host lens galaxies
at a mean redshift of 0.2 and with a mean velocity dispersion of
270 km s−1. Our main results can be summarized as follows:

(i) given our criteria for the significant detection of a mass sub-
structure, no new dark mass substructure has been identified;

(ii) for each lens we have calculated the mass sensitivity function
as a function of the substructure position on the lensed image plane
within relatively tight regions around the critical curves. We have
found that, given the quality of the considered data, the lowest
detectable mass typically varies on average between 0.04 × 1010

and 0.14 × 1010 M� depending on the lens. In some cases, for
specific substructure positions the detection threshold, it can be as
low as 0.01 × 1010 M�;

(iii) by statistically combining these non-detections with the de-
tection of a dark-matter-dominated substructure in the lens system
SDSS J0946+1006 (Vegetti et al. 2010), we have inferred a pro-
jected mass fraction in substructure which is consistent with obser-
vations based on flux-ratio anomalies of multiply imaged quasars
(Dalal & Kochanek 2002) and with the predictions from N-body
CDM simulations (Xu et al. 2013) at the 68 per cent CL.

In the near future, thanks to high-resolution adaptive optics (e.g.
from the Strong lensing at High Angular Resolution Programme,
SHARP; Lagattuta et al. 2012) and to highly structured Einstein
rings observed with the HST in the ultraviolet (e.g. HST observing
program 12898), we expect to extend our sensitivity to substructure
masses as low as 106 M�, and therefore test the CDM paradigm in a
mass regime where most of the discrepancy between the CDM pre-
dicted subhalo mass function and the observed luminosity function
is found.
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