50 research outputs found

    Neurobiological findings in posttraumatic stress disorder: a review

    Get PDF
    Since posttraumatic stress disorder (PTSD) was first recognized as a psychiatric disorder, it has generated a great deal of scientific interest. Recent studies on the neurobiology of PTSD provide evidence that PTSD is biologically distinct from other types of traumatic and nontraumatic stress responses. This paper reviews three important directions of neurobiological research in PTSD: noradrenergic axis changes and associated alterations in autonomic responsivity neuroendocrine changes involving the hypothalamic-pituitary-adrenocortical (HPA) axis, and neuroanatomy changes involving the hippocampus. Each section reviews the salient aspects of preclinical research on the biology of stress and their bearing on the understanding of PTSD, and summarizes prominent findings from clinical biological studies of PTSD, Tentative models that integrate current findings from the clinical study of PTSD are reviewed. To conclude, the important methodological and empirical issues that need to be addressed by future studies are indicated

    Fuzzy logic gain‐tuned adaptive second‐order GI‐based multi‐objective control for reliable operation of grid‐interfaced photovoltaic system

    Get PDF
    This study presents the fuzzy logic integrator gain‐tuned improved second‐order generalized integrator (GI) for a double‐stage grid‐interfaced photovoltaic (PV) system. The proposed system includes the functionalities of feeding active power to the grid, power factor correction, grid currents balancing and system isolation under grid side faults. Moreover, the smooth system operation is ensured under weak distribution grids where grid voltage is subject to huge diversions. Furthermore, automatic protection scheme for the system under grid‐side faults is also established with the proposed algorithm for increased reliability. The fuzzy‐tuned GI provides advantages of efficient and effective extraction of load current fundamental component under steady‐state and dynamic grid conditions. The non‐linear frequency error variation is compensated here using fuzzy logic‐based self‐tuning integrator gain of the controller. The controller is improved to mitigate the possible DC component in the load current. The neutral current in the loads is nullified by using a four wire system. The adaptive DC bus voltage helps to minimize the switching losses and prevents unexpected tripping of the PV inverter. The system is experimentally verified using a prototype built in the laboratory

    Advancements in Enhancing Resilience of Electrical Distribution Systems: A Review on Frameworks, Metrics, and Technological Innovations

    Full text link
    This comprehensive review paper explores power system resilience, emphasizing its evolution, comparison with reliability, and conducting a thorough analysis of the definition and characteristics of resilience. The paper presents the resilience frameworks and the application of quantitative power system resilience metrics to assess and quantify resilience. Additionally, it investigates the relevance of complex network theory in the context of power system resilience. An integral part of this review involves examining the incorporation of data-driven techniques in enhancing power system resilience. This includes the role of data-driven methods in enhancing power system resilience and predictive analytics. Further, the paper explores the recent techniques employed for resilience enhancement, which includes planning and operational techniques. Also, a detailed explanation of microgrid (MG) deployment, renewable energy integration, and peer-to-peer (P2P) energy trading in fortifying power systems against disruptions is provided. An analysis of existing research gaps and challenges is discussed for future directions toward improvements in power system resilience. Thus, a comprehensive understanding of power system resilience is provided, which helps in improving the ability of distribution systems to withstand and recover from extreme events and disruptions

    Modelling of the Electric Vehicle Charging Infrastructure as Cyber Physical Power Systems: A Review on Components, Standards, Vulnerabilities and Attacks

    Full text link
    The increasing number of electric vehicles (EVs) has led to the growing need to establish EV charging infrastructures (EVCIs) with fast charging capabilities to reduce congestion at the EV charging stations (EVCS) and also provide alternative solutions for EV owners without residential charging facilities. The EV charging stations are broadly classified based on i) where the charging equipment is located - on-board and off-board charging stations, and ii) the type of current and power levels - AC and DC charging stations. The DC charging stations are further classified into fast and extreme fast charging stations. This article focuses mainly on several components that model the EVCI as a cyberphysical system (CPS)

    Palladium-catalyzed heteroallylation of unactivated alkenes – synthesis of citalopram

    Get PDF
    A palladium-catalyzed difunctionalization of unactivated alkenes with tethered nucleophiles is reported. The versatile reaction occurs with simple allylic halides and can be carried out under air. The methodology provides rapid access to a wide array of desirable heterocyclic targets, as illustrated by a concise synthesis of the widely prescribed antidepressant citalopram

    A fast radio burst localized to a massive galaxy

    Get PDF
    Intense, millisecond-duration bursts of radio waves (named fast radio bursts) have been detected from beyond the Milky Way. Their dispersion measures—which are greater than would be expected if they had propagated only through the interstellar medium of the Milky Way—indicate extragalactic origins and imply contributions from the intergalactic medium and perhaps from other galaxies. Although several theories exist regarding the sources of these fast radio bursts, their intensities, durations and temporal structures suggest coherent emission from highly magnetized plasma. Two of these bursts have been observed to repeat, and one repeater (FRB 121102) has been localized to the largest star-forming region of a dwarf galaxy at a cosmological redshift of 0.19 (refs. 7,8,9). However, the host galaxies and distances of the hitherto non-repeating fast radio bursts are yet to be identified. Unlike repeating sources, these events must be observed with an interferometer that has sufficient spatial resolution for arcsecond localization at the time of discovery. Here we report the localization of a fast radio burst (FRB 190523) to a few-arcsecond region containing a single massive galaxy at a redshift of 0.66. This galaxy is different from the host of FRB 121102, as it is a thousand times more massive, with a specific star-formation rate (the star-formation rate divided by the mass) a hundred times smaller

    Development of two-drug eluting stent

    No full text
    The success of drug eluting stents (DESs) has been challenged by recent reports published on recurrence of thrombosis after the implantation of DESs. The response to injury post stenting leading to recruitment and stabilization of platelets has posed a severe threat to using DESs. Many reports published earlier indicate a lack of a complete endothelial layer formation post-stenting as a precursor to thrombosis. Various approaches have been attempted to prevent thrombosis, including delivering biological agents (e.g., estradiol) that promote endothelialization and use of natural polymers as drug carriers. The drawback of these methods has been inability to release the biological agent in synchronization with the foreign body response in vivo. The natural healing process of the endothelium after an injury starts to occur after a week and may take up to a period of month in humans to complete. The challenge in developing an anti thrombogenic stent has been to sustain the release of drug over this period of time. Previous approaches have focused on modifying the polymeric carrier to achieve this sustained drug release. A significant knowledge gap exists in understanding the physico-chemical properties of the drug and its interaction with the polymer in developing formulation for DES. The present work involves in developing a DES with combination of drugs that can release both antiproliferative agent (Paclitaxel (PTX)) and endothelializing agent (Probucol (PB)) from the same polyurethane (PU) matrix in a sustained manner. Paclitaxel is an anti proliferative agent that inhibits restenosis, used in commercially available drug eluting stent. Probucol (PB), a highly lipophilic drug, has been shown to promote endothelialization

    Effect of Operating Parameters on the Growth Rate of Solution Grown Crystals

    Get PDF
    In this work, crystallization experiments were carried out on four separate aqueous solutions of adipic acid, ammonium sulfate, urea and L-glutamic acid to measure the growth rate of these crystals under varying values of temperature, stirrer speed, cooling rate and holding time. All experiments were carried out in the Mettler Toledo LabMax, which is an automated laboratory reactor. A polarized light microscope was used to capture the images of the crystals and Image Pro Plus software was used for the analysis of crystal samples. Due to technical difficulties, the data could not be measured for adipic acid, ammonium sulfate or urea. L-Glutamic acid was much easier to work with and it was possible to obtain data. The growth rate for the b form of L-glutamic acid was estimated from the experimental data using a numerical simulatio

    RLMMN adaptive filtering based control scheme for multi-objective GPV system

    No full text
    This paper presents a robust least mean mixed norm (RLMMN) adaptive control scheme for multi-objective grid integrated solar photovoltaic (GPV) system under abnormal grid conditions. The control scheme serves manifold objectives such as load balancing, harmonics elimination, improving active power penetration into the distribution network while having active shunt filtering capabilities. The estimated perturb and observe (EPO) scheme is used to harvest crest power from solar photovoltaic (PV) array under variable atmospheric conditions. The proposed control scheme is robust under impulsive power system environments and has the advantages of low steady-state oscillations, low complexity, less mean square error and good dynamic response. The comparative performance with the conventional algorithms depict the satisfactory performance under dynamic condition. The DC link voltage is adapted in proportion with PCC voltage to reduce VSC (Voltage Source Converter) converter losses and its tripping under weak distributed grid conditions. Test results demonstrate the satisfactory behavior under steady-state and dynamic conditions of load unbalancing, variable solar insolation and grid voltage fluctuations. The total harmonic distortions (THDs) of grid currents are observed within limits of grid codes compliance according to an IEEE 519 standard
    corecore