186 research outputs found

    On rings whose modules have nonzero homomorphisms to nonzero submodules

    Get PDF
    We carry out a study of rings R for which HomR (M;N) 6= 0 for all nonzero N ≤ MR. Such rings are called retractable. For a retractable ring, Artinian condition and having Krull dimension are equivalent. Furthermore, a right Artinian ring in which prime ideals commute is precisely a right Noetherian retractable ring. Retractable rings are characterized in several ways. They form a class of rings that properly lies between the class of pseudo-Frobenius rings, and the class of max divisible rings for which the converse of Schur's lemma holds. For several types of rings, including commutative rings, retractability is equivalent to semi-Artinian condition. We show that a Kothe ring R is an Artinian principal ideal ring if and only if it is a certain retractable ring, and determine when R is retractable

    P5CS expression study in a new family with ALDH18A1-associated hereditary spastic paraplegia SPG9

    Get PDF
    In 2015\u20132016, we and others reported ALDH18A1 mutations causing dominant (SPG9A) or recessive (SPG9B) spastic paraplegia. In vitro production of the ALDH18A1 product, \u3941-pyrroline-5-carboxylate synthetase (P5CS), appeared necessary for cracking SPG9 disease-causing mechanisms. We now describe a baculovirus\u2013insect cell system that yields mgs of pure human P5CS and that has proven highly valuable with two novel P5CS mutations reported here in new SPG9B patients. We conclude that both mutations are disease-causing, that SPG9B associates with partial P5CS deficiency and that it is clinically more severe than SPG9A, as reflected in onset age, disability, cognitive status, growth, and dysmorphic traits

    Dual EZH2 and EHMT2 histone methyltransferase inhibition increases biological efficacy in breast cancer cells

    Get PDF
    Background: Many cancers show aberrant silencing of gene expression and overexpression of histone methyltransferases. The histone methyltransferases (HKMT) EZH2 and EHMT2 maintain the repressive chromatin histone methylation marks H3K27me and H3K9me, respectively, which are associated with transcriptional silencing. Although selective HKMT inhibitors reduce levels of individual repressive marks, removal of H3K27me3 by specific EZH2 inhibitors, for instance, may not be sufficient for inducing the expression of genes with multiple repressive marks. Results: We report that gene expression and inhibition of triple negative breast cancer cell growth (MDA-MB-231) are markedly increased when targeting both EZH2 and EHMT2, either by siRNA knockdown or pharmacological inhibition, rather than either enzyme independently. Indeed, expression of certain genes is only induced upon dual inhibition. We sought to identify compounds which showed evidence of dual EZH2 and EHMT2 inhibition. Using a cell-based assay, based on the substrate competitive EHMT2 inhibitor BIX01294, we have identified proof-of-concept compounds that induce re-expression of a subset of genes consistent with dual HKMT inhibition. Chromatin immunoprecipitation verified a decrease in silencing marks and an increase in permissive marks at the promoter and transcription start site of re-expressed genes, while Western analysis showed reduction in global levels of H3K27me3 and H3K9me3. The compounds inhibit growth in a panel of breast cancer and lymphoma cell lines with low to sub-micromolar IC50s. Biochemically, the compounds are substrate competitive inhibitors against both EZH2 and EHMT1/2. Conclusions: We have demonstrated that dual inhibition of EZH2 and EHMT2 is more effective at eliciting biological responses of gene transcription and cancer cell growth inhibition compared to inhibition of single HKMTs, and we report the first dual EZH2-EHMT1/2 substrate competitive inhibitors that are functional in cells

    The CDK9 C-helix Exhibits Conformational Plasticity That May Explain the Selectivity of CAN508

    Get PDF
    Correct regulation of transcription is essential for maintaining a healthy cellular state. During transcription RNA polymerase II (Pol II) proceeds in a regulated manner through several transitions to ensure appropriate control of synthesis and enable correct processing of the pre-RNA. Shortly after initiation Pol II is caused to pause by the binding of factors, DSIF and NELF. To enable transition of Pol II into the elongation phase CDK9/cyclin T phosphorylates the C-terminal domain (CTD) of Pol II, DSIF and NELF. This phosphorylation releases the paused state and provides an alternative set of post-transcriptional modifications on the CTD to generate a binding platform for elongation, histone modifying and termination factors. CDK9/cyclin T is itself regulated within multicomponent complexes. A small activated complex, containing Brd4, recruits CDK9/cyclin T to active sites of transcription, thereby promoting the elongation of transcription. The role of CDK9/cyclin T in the regulation of transcription has resulted in its validation as a drug target against several disease states including cancer, HIV and cardiac hypertrophy.In this thesis, I present the crystallographic structures of a series of 2-amino-4-heteroaryl-pyrimidine compounds and the roscovitine derivative, (S)-CR8, bound to CDK9/cyclin T and CDK2/cyclin A. In combination with thermal denaturation data and kinetic analysis, these structures have suggested chemical modifications that might be made to increase the CDK9 specificity of these compounds. I have also validated the use of a mutated form of cyclin T for use in the development of CDK9/cyclin T inhibitors.In addition, I present both structural and kinetic analysis of the Brd4-CDK9/cyclin T interaction. I show that C-terminal fragments of Brd4 enhance the in vitro kinase activity of CDK9/cyclin T against the Pol II CTD. Furthermore, I demonstrate that this enhancement may be inhibited by Plk1-mediated phosphorylation of Brd4. Finally, I show that Brd4 binds to a site that spans CDK9 and cyclin T and I propose detailed molecular models of the Brd4-cyclin T interaction.This thesis is not currently available via ORA

    Crystal cookery – using high-throughput technologies and the grocery store as a teaching tool

    Get PDF
    Using high-throughput crystallization screening technologies and data analysis, an educational program has been developed to teach the scientific method through crystallization and access to a grocery store, a post office and the internet

    SGC - Structural Biology and Human Health: A New Approach to Publishing Structural Biology Results

    Get PDF
    The Structural Genomics Consortium (SGC) is a not-for-profit, public-private partnership established to deliver novel structural biology knowledge on proteins of medical relevance and place this information into the public domain without restriction, spearheading the concept of "Open-Source Science" to enable drug discovery. The SGC is a major provider of structural information focussed on proteins related to human health, contributing 20.5% of novel structures released by the PDB in 2008. In this article we describe the PLoS ONE Collection entitled 'Structural Biology and Human Health: Medically Relevant Proteins from the SGC'. This Collection contains a series of articles documenting many of the novel protein structures determined by the SGC and work to further characterise their function. Each article in this Collection can be read in an enhanced version where we have integrated our interactive and intuitive 3D visualisation platform, known as iSee. This publishing platform enables the communication of complex structural biology and related data to a wide audience of non-structural biologists. With the use of iSee as the first example of an interactive and intuitive 3D document publication method as part of PLoS ONE, we are pushing the boundaries of structural biology data delivery and peer-review. Our strong desire is that this step forward will encourage others to consider the need for publication of three dimensional and associated data in a similar manner. © 2009 Lee et al

    Heterogeneity in clinical practices for post-cardiotomy extracorporeal life support: A pilot survey from the PELS-1 multicenter study

    Get PDF
    Background: High-quality evidence for post-cardiotomy extracorporeal life support (PC-ECLS) management is lacking. This study investigated real-world PC-ECLS clinical practices. Methods: This cross-sectional, multi-institutional, international pilot survey explored center organization, anticoagulation management, left ventricular unloading, distal limb perfusion, PC-ECLS monitoring, and transfusion practices. Twenty-nine questions were distributed among 34 hospitals participating in the Post-cardiotomy Extra-Corporeal Life Support Study. Results: Of the 32 centers [16 low-volume (50%); 16 high-volume (50%)] that responded, 16 (50%) had dedicated ECLS specialists. Twenty-six centers (81.3%) reported using additional mechanical circulatory supports. Anticoagulation practices were highly heterogeneous: 24 hospitals (75%) reported using patients bleeding status as a guide, without a specific threshold in 54.2% of cases. Transfusion targets ranged from 7 to 10 g/dL. Most centers used cardiac venting on a case-by-case basis (78.1%) and regular distal limb perfusion (84.4%). Nineteen (54.9%) centers reported dedicated monitoring protocols, including daily echocardiography (87.5%), Swan-Ganz catheterization (40.6%), cerebral near-infrared spectroscopy (53.1%), and multimodal assessment of limb ischemia. Inspection of the circuit (71.9%), oxygenator pressure drop (68.8%), plasma free hemoglobin (75%), d-dimer (59.4%), lactate dehydrogenase (56.3%), and fibrinogen (46.9%) are used to diagnose hemolysis and thrombosis. Conclusions: This study shows remarkable heterogeneity in clinical practices for PC-ECLS management. More standardized protocols and better implementation of the available evidence are recommended

    G9a regulates group 2 innate lymphoid cell development by repressing the group 3 innate lymphoid cell program.

    Get PDF
    Innate lymphoid cells (ILCs) are emerging as important regulators of homeostatic and disease-associated immune processes. Despite recent advances in defining the molecular pathways that control development and function of ILCs, the epigenetic mechanisms that regulate ILC biology are unknown. Here, we identify a role for the lysine methyltransferase G9a in regulating ILC2 development and function. Mice with a hematopoietic cell-specific deletion of G9a (Vav.G9a(-/-) mice) have a severe reduction in ILC2s in peripheral sites, associated with impaired development of immature ILC2s in the bone marrow. Accordingly, Vav.G9a(-/-) mice are resistant to the development of allergic lung inflammation. G9a-dependent dimethylation of histone 3 lysine 9 (H3K9me2) is a repressive histone mark that is associated with gene silencing. Genome-wide expression analysis demonstrated that the absence of G9a led to increased expression of ILC3-associated genes in developing ILC2 populations. Further, we found high levels of G9a-dependent H3K9me2 at ILC3-specific genetic loci, demonstrating that G9a-mediated repression of ILC3-associated genes is critical for the optimal development of ILC2s. Together, these results provide the first identification of an epigenetic regulatory mechanism in ILC development and function

    CACHE (Critical Assessment of Computational Hit-finding Experiments): A public–private partnership benchmarking initiative to enable the development of computational methods for hit-finding

    Get PDF
    One aspirational goal of computational chemistry is to predict potent and drug-like binders for any protein, such that only those that bind are synthesized. In this Roadmap, we describe the launch of Critical Assessment of Computational Hit-finding Experiments (CACHE), a public benchmarking project to compare and improve small-molecule hit-finding algorithms through cycles of prediction and experimental testing. Participants will predict small-molecule binders for new and biologically relevant protein targets representing different prediction scenarios. Predicted compounds will be tested rigorously in an experimental hub, and all predicted binders as well as all experimental screening data, including the chemical structures of experimentally tested compounds, will be made publicly available and not subject to any intellectual property restrictions. The ability of a range of computational approaches to find novel binders will be evaluated, compared and openly published. CACHE will launch three new benchmarking exercises every year. The outcomes will be better prediction methods, new small-molecule binders for target proteins of importance for fundamental biology or drug discovery and a major technological step towards achieving the goal of Target 2035, a global initiative to identify pharmacological probes for all human proteins. [Figure not available: see fulltext.
    corecore