886 research outputs found

    Math empowerment: a multidisciplinary example to engage primary school students in learning mathematics

    Get PDF
    This paper describes an educational project conducted in a primary school in Italy (Scuola Primaria Alessandro Manzoni at Mulazzano, near to Milan). The school requested our collaboration to help improve upon the results achieved on the National Tests for Mathematics, in which students, aged 7, registered performances lower than the national average the past year. From January to June, 2016, we supported teachers, providing them with information, tools and methods to increase their pupils’ curiosity and passion for mathematics. Mixing our different experiences and competences (instructional design and gamification, information technologies and psychology) we have tried to provide a broader spectrum of parameters, tools and keys to understand how to achieve an inclusive approach that is ‘personalised’ to each student. This collaboration with teachers and students allowed us to draw interesting observations about learning styles, pointing out the negative impact that standardized processes and instruments can have on the self‐esteem and, consequently, on student performance. The goal of this programme was to find the right learning levers to intrigue and excite students in mathematical concepts and their applications. Our hypothesis is that, by considering the learning of mathematics as a continuous process, in which students develop freely through their own experiments, observations, involvement and curiosity, students can achieve improved results on the National Tests (INVALSI). This paper includes results of a survey conducted by children ‐’About Me and Mathematics‘

    Machine learning approach to the safety assessment of a prestressed concrete railway bridge

    Get PDF
    Early structural anomalies identification allows to hold maintenance activities that avoid loss of both economic resources and human life. This is extremely important for crucial infrastructures like railway bridges. This paper illustrates the structural health monitoring approach applied to a simply supported prestressed concrete railway bridge. In the framework of long-term monitoring, both static quantities (displacements, strains, and rotations) and environmental measurements (temperatures) have been recorded. Machine learning techniques, Extreme Gradient boosting machine and Multi-Layer Perceptron, have been exploited to build regression correlation models associated with the undamaged structural condition after adequate pre-processing operations. In this way, alarm thresholds based on the expected residuals between the predicted structural quantities and the measured ones, have been defined. The thresholds turned out to be able to catch early-stage anomalies not pointed out by traditional damage thresholds based on the design values. The proposed damage index is chosen as the moving median of the residuals, allowing a significant reduction of false alarms. The used correlation models and the obtained results represent a starting point for the generalization of this approach to the bridges belonging to the same static typology

    Automated Heuristic Optimization of Prostate VMAT Treatment Planning

    Get PDF
    Purpose: To investigate a genetic algorithm approach to automatic treatment planning. Methods: A Python script based on genetic algorithm (GA) was implemented for VMAT treatment planning of prostate tumor. The script was implemented in RayStation treatment planning system using Python code. Two different clinical prescriptions were considered: 78 Gy prescribed to planning target volume in 39 fractions (GROUP 1) and simultaneous integrated boost (70.2 Gy to prostate bed and 61.1 Gy to seminal vesicles) in 26 fractions (GROUP 2). The script automatically optimizes doses to PTV and OARs according to GA. A comparison with corresponding plans created with Monaco TPS (M) and Auto-Planning module of Pinnacle3 (AP) was carried out. The plans were evaluated with a total score (TS) of PlanIQ software in terms of target coverage and sparing of OARs as well as clinical score (CS) performed by a Radiation Oncologist. Results: In GROUP 1, mean value of TS were 150.6 ± 30.7, 146.3 ± 36.1 and 137.4 ± 35.7 for AP, GA and M respectively. For GROUP 2, mean value for TS were 163.5 ± 16.8, 163.4 ± 24.7 and 162.9 ± 16.6 for AP, GA and M respectively with no significance differences. In terms of CS, the highest value has been attributed to GA in four patients out of five for both GROUP 1 and 2. Conclusions: Genetic approach is practicable for prostate VMAT plan generation and studies are underway in other anatomical sites such as Head and Neck and Rectum

    Design and advancement status of the Beam Expander Testing X-ray facility (BEaTriX)

    Get PDF
    The BEaTriX (Beam Expander Testing X-ray facility) project is an X-ray apparatus under construction at INAF/OAB to generate a broad (200́60 mm2), uniform and low-divergent X-ray beam within a small lab (6́15 m2). BEaTriX will consist of an X-ray source in the focus a grazing incidence paraboloidal mirror to obtain a parallel beam, followed by a crystal monochromation system and by an asymmetrically-cut diffracting crystal to perform the beam expansion to the desired size. Once completed, BEaTriX will be used to directly perform the quality control of focusing modules of large X-ray optics such as those for the ATHENA X-ray observatory, based on either Silicon Pore Optics (baseline) or Slumped Glass Optics (alternative), and will thereby enable a direct quality control of angular resolution and effective area on a number of mirror modules in a short time, in full X-ray illumination and without being affected by the finite distance of the X-ray source. However, since the individual mirror modules for ATHENA will have an optical quality of 3-4 arcsec HEW or better, BEaTriX is required to produce a broad beam with divergence below 1-2 arcsec, and sufficient flux to quickly characterize the PSF of the module without being significantly affected by statistical uncertainties. Therefore, the optical components of BEaTriX have to be selected and/or manufactured with excellent optical properties in order to guarantee the final performance of the system. In this paper we report the final design of the facility and a detailed performance simulation

    Personalize, participate, predict, and prevent: 4Ps in inflammatory bowel disease

    Get PDF
    Inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis (UC), is a complex, immune-mediated, disorder which leads to several gastrointestinal and systemic manifestations determining a poor quality of life, disability, and other negative health outcomes. Our knowledge of this condition has greatly improved over the last few decades, and a comprehensive management should take into account both biological (i.e., disease-related, patient-related) and non-biological (i.e., socioeconomic, cultural, environmental, behavioral) factors which contribute to the disease phenotype. From this point of view, the so called 4P medicine framework, including personalization, prediction, prevention, and participation could be useful for tailoring ad hoc interventions in IBD patients. In this review, we discuss the cutting-edge issues regarding personalization in special settings (i.e., pregnancy, oncology, infectious diseases), patient participation (i.e., how to communicate, disability, tackling stigma and resilience, quality of care), disease prediction (i.e., faecal markers, response to treatments), and prevention (i.e., dysplasia through endoscopy, infections through vaccinations, and post-surgical recurrence). Finally, we provide an outlook discussing the unmet needs for implementing this conceptual framework in clinical practice

    Results of the first European Source Apportionment intercomparison for Receptor and Chemical Transport Models

    Get PDF
    In this study, the performance of the source apportionment model applications were evaluated by comparing the model results provided by 44 participants adopting a methodology based on performance indicators: z-scores and RMSEu, with pre-established acceptability criteria. Involving models based on completely different and independent input data, such as receptor models (RMs) and chemical transport models (CTMs), provided a unique opportunity to cross-validate them. In addition, comparing the modelled source chemical profiles, with those measured directly at the source contributed to corroborate the chemical profile of the tested model results. The most used RM was EPA- PMF5. RMs showed very good performance for the overall dataset (91% of z-scores accepted) and more difficulties are observed with SCE time series (72% of RMSEu accepted). Industry resulted the most problematic source for RMs due to the high variability among participants. Also the results obtained with CTMs were quite comparable to their ensemble reference using all models for the overall average (>92% of successful z-scores) while the comparability of the time series is more problematic (between 58% and 77% of the candidates’ RMSEu are accepted). In the CTM models a gap was observed between the sum of source contributions and the gravimetric PM10 mass likely due to PM underestimation in the base case. Interestingly, when only the tagged species CTM results were used in the reference, the differences between the two CTM approaches (brute force and tagged species) were evident. In this case the percentage of candidates passing the z-score and RMSEu tests were only 50% and 86%, respectively. CTMs showed good comparability with RMs for the overall dataset (83% of the z-scores accepted), more differences were observed when dealing with the time series of the single source categories. In this case the share of successful RMSEu was in the range 25% - 34%.JRC.C.5-Air and Climat

    X-ray tests of the ATHENA mirror modules in BEaTriX: from design to reality

    Get PDF
    The BEaTriX (Beam Expander Testing X-ray) facility is now operative at the INAF-Osservatorio Astronomico Brera (Merate, Italy). This facility has been specifically designed and built for the X-ray acceptance tests (PSF and Effective Area) of the ATHENA Silicon Pore Optics (SPO) Mirror Modules (MM). The unique setup creates a parallel, monochromatic, large X-ray beam, that fully illuminates the aperture of the MMs, generating an image at the ATHENA focal length of 12 m. This is made possible by a microfocus X-ray source followed by a chain of optical components (a paraboloidal mirror, 2 channel cut monochromators, and an asymmetric silicon crystal) able to expand the X-ray beam to a 6 cm × 17 cm size with a residual divergence of 1.5 arcsec (vertical) × 2.5 arcsec (horizontal). This paper reports the commissioning of the 4.5 keV beam line, and the first light obtained with a Mirror Module

    Les droits disciplinaires des fonctions publiques : « unification », « harmonisation » ou « distanciation ». A propos de la loi du 26 avril 2016 relative à la déontologie et aux droits et obligations des fonctionnaires

    Get PDF
    The production of tt‟ , W+bb‟ and W+cc‟ is studied in the forward region of proton–proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98±0.02 fb−1 . The W bosons are reconstructed in the decays W→ℓΜ , where ℓ denotes muon or electron, while the b and c quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions.The production of tt‟t\overline{t}, W+bb‟W+b\overline{b} and W+cc‟W+c\overline{c} is studied in the forward region of proton-proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98 ±\pm 0.02 \mbox{fb}^{-1}. The WW bosons are reconstructed in the decays W→ℓΜW\rightarrow\ell\nu, where ℓ\ell denotes muon or electron, while the bb and cc quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions

    Multidifferential study of identified charged hadron distributions in ZZ-tagged jets in proton-proton collisions at s=\sqrt{s}=13 TeV

    Full text link
    Jet fragmentation functions are measured for the first time in proton-proton collisions for charged pions, kaons, and protons within jets recoiling against a ZZ boson. The charged-hadron distributions are studied longitudinally and transversely to the jet direction for jets with transverse momentum 20 <pT<100< p_{\textrm{T}} < 100 GeV and in the pseudorapidity range 2.5<η<42.5 < \eta < 4. The data sample was collected with the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.64 fb−1^{-1}. Triple differential distributions as a function of the hadron longitudinal momentum fraction, hadron transverse momentum, and jet transverse momentum are also measured for the first time. This helps constrain transverse-momentum-dependent fragmentation functions. Differences in the shapes and magnitudes of the measured distributions for the different hadron species provide insights into the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb public pages
    • 

    corecore