11 research outputs found

    Novel site-specific PEGylated L-asparaginase

    Get PDF
    L-asparaginase (ASNase) from Escherichia coli is currently used in some countries in its PEGylated form (ONCASPAR, pegaspargase) to treat acute lymphoblastic leukemia (ALL). PEGylation refers to the covalent attachment of poly(ethylene) glycol to the protein drug and it not only reduces the immune system activation but also decreases degradation by plasmatic proteases. However, pegaspargase is randomly PEGylated and, consequently, with a high degree of polydispersity in its final formulation. In this work we developed a site-specific N-terminus PEGylation protocol for ASNase. The monoPEG-ASNase was purified by anionic followed by size exclusion chromatography to a final purity of 99%. The highest yield of monoPEG-ASNase of 42% was obtained by the protein reaction with methoxy polyethylene glycol-carboxymethyl N-hydroxysuccinimidyl ester (10kDa) in 100 mM PBS at pH 7.5 and PEG:ASNase ratio of 25:1. The monoPEG-ASNase was found to maintain enzymatic stability for more days than ASNase, also was resistant to the plasma proteases like asparaginyl endopeptidase and cathepsin B. Additionally, monoPEG-ASNase was found to be potent against leukemic cell lines (MOLT-4 and REH) in vitro like polyPEG-ASNase. monoPEG-ASNase demonstrates its potential as a novel option for ALL treatment, being an inventive novelty that maintains the benefits of the current enzyme and solves challenges.publishe

    Complete blood count parameters as biomarkers of retinopathy of prematurity: a Portuguese multicenter study

    Get PDF
    © The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.Purpose: To evaluate complete blood count (CBC) parameters in the first week of life as predictive biomarkers for the development of retinopathy of prematurity (ROP). Methods: Multicenter, prospective, observational study of a cohort of preterm infants born with gestational age (GA) < 32 weeks or birth weight < 1500 g in eight Portuguese neonatal intensive care units. All demographic, clinical, and laboratory data from the first week of life were collected. Univariate logistic regression was used to assess risk factors for ROP and then multivariate regression was performed. Results: A total of 455 infants were included in the study. The median GA was 29.6 weeks, and the median birth weight was 1295 g. One hundred and seventy-two infants (37.8%) developed ROP. Median values of erythrocytes (p < 0.001), hemoglobin (p < 0.001), hematocrit (p < 0.001), mean corpuscular hemoglobin concentration (p < 0.001), lymphocytes (p = 0.035), and platelets (p = 0.003) of the group of infants diagnosed with ROP any stage were lower than those without ROP. Mean corpuscular volume (MCV) (p = 0.044), red blood cell distribution width (RDW) (p < 0.001), erythroblasts (p < 0.001), neutrophils (p = 0.030), neutrophils-lymphocytes ratio (p = 0.028), and basophils (p = 0.003) were higher in the ROP group. Higher values of MCV, erythroblasts, and basophils remained significantly associated with ROP after multivariate regression. Conclusion: In our cohort, the increase in erythroblasts, MCV, and basophils in the first week of life was significantly and independently associated with the development of ROP. These CBC parameters may be early predictive biomarkers for ROP.Open access funding provided by FCT|FCCN (b-on). This work was supported by the Laboratório de Genética and the Instituto de Saúde Ambiental (ISAMB) of the Faculdade de Medicina of Universidade de Lisboa and the Instituto de Investigação Científica Bento da Rocha Cabral. The writing of the manuscript was also supported by funds from Fundação para a Ciência e a Tecnologia to ISAMB (ref. UIDB/04295/2020 and UIDP/04295/2020). This work was also part of a doctoral project funding by the company CUF with a PhD grant in Medicine awarded in 2021 and by the Portuguese Society of Ophthalmology with a PhD grant awarded in 2019.info:eu-repo/semantics/publishedVersio
    corecore