685 research outputs found

    Negative parental responses to coming out and family functioning in a sample of lesbian and gay young adults

    Get PDF
    Parental responses to youths' coming out (CO) are crucial to the subsequent adjustment of children and family. The present study investigated the negative parental reaction to the disclosure of same-sex attraction and the differences between maternal and paternal responses, as reported by their homosexual daughters and sons. Participants' perceptions of their parents' reactions (evaluated through the Perceived Parental Reactions Scale, PPRS), age at coming out, gender, parental political orientation, and religiosity involvement, the family functioning (assessed through the Family Adaptability and Cohesion Evaluation Scales, FACES IV), were assessed in 164 Italian gay and lesbian young adults. Pearson correlation coefficients were calculated to assess the relation between family functioning and parental reaction to CO. The paired sample t-test was used to compare mothers and fathers' scores on the PPRS. Hierarchical multiple regression was conducted to analyze the relevance of each variable. No differences were found between mothers and fathers in their reaction to the disclosure. The analysis showed that a negative reaction to coming out was predicted by parents' right-wing political conservatism, strong religious beliefs, and higher scores in the scales Rigid and Enmeshed. Findings confirm that a negative parental reaction is the result of poor family resources to face a stressful situation and a strong belief in traditional values. These results have important implications in both clinical and social fields

    The effect of nitric oxide on the pressure of the acutely obstructed ureter

    Get PDF
    Acute ureteral obstruction leads to changes in pressure inside the ureter, interrupting ureter function. The aim of our study is to explore the relationship between nitric oxide (NO) concentration and pressure in the ureter and to observe the effects of nitric oxide on the revival of renal function. We created the animal models by embedding balloons in the lower ureters of anesthetized dogs and expanding them to simulate acute ureteral obstruction. First, the test animals were pre-treated intravenously with different doses of L-NAME (non-selective nitric oxide synthase inhibitor) to inhibit nitric oxide synthase (NOS), and 10 min later, each subject was administered an intravenous dose of isoproterenol (10 μg/kg). We measured ureter pressure (UP), total and peak concentrations of NO (using an NO monitor, model inNO-T) in ureteral urine, and the volume of the urine (UFV) leaking from the balloon edge. After a certain amount of time had elapsed, it became clear that the dose of L-NAME was inversely related to the total and peak concentrations of NO, the rate of change in UP, and the volume of urine produced. We conclude that L-NAME prevents the NOS from inhibiting the release of NO, then inhibits the effect of isoproterenol reducing the pressure of the acute obstructive ureter. Inversely, we think that NO can reduce the pressure of the acute obstructive ureter and make the obstructive ureter recanalization. And when more the concentration of nitric oxide, the more the pressure will be reduced, and more urine will be collected

    Parainfluenza virus infection associated with posterior reversible encephalopathy syndrome: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Posterior reversible encephalopathy syndrome is a clinical and radiological entity. The most accepted theory of posterior reversible encephalopathy syndrome is a loss of autoregulation in cerebral blood flow with a subsequent increase in vascular permeability and leakage of blood plasma and erythrocytes, producing vasogenic edema. In infection-associated posterior reversible encephalopathy syndrome, a clinical pattern consistent with systemic inflammatory response syndrome develops. Parainfluenza virus has not been reported in the medical literature to be associated with posterior reversible encephalopathy syndrome.</p> <p>Case presentation</p> <p>We report herein the case of a 54-year-old Caucasian woman with posterior reversible encephalopathy syndrome associated with parainfluenza virus infection who presented with generalized headache, blurring of vision, new-onset seizure and flu-like symptoms.</p> <p>Conclusion</p> <p>Infection-associated posterior reversible encephalopathy syndrome as well as hypertension-associated posterior reversible encephalopathy syndrome favor the contribution of endothelial dysfunction to the pathophysiology of this clinicoradiological syndrome. In view of the reversible nature of this clinical entity, it is important that all physicians are well aware of posterior reversible encephalopathy syndrome in patients presenting with headache and seizure activity. A detailed clinical assessment leading to the recognition of precipitant factors in posterior reversible encephalopathy syndrome is paramount.</p

    Numerical simulation of blood flow and pressure drop in the pulmonary arterial and venous circulation

    Get PDF
    A novel multiscale mathematical and computational model of the pulmonary circulation is presented and used to analyse both arterial and venous pressure and flow. This work is a major advance over previous studies by Olufsen et al. (Ann Biomed Eng 28:1281–1299, 2012) which only considered the arterial circulation. For the first three generations of vessels within the pulmonary circulation, geometry is specified from patient-specific measurements obtained using magnetic resonance imaging (MRI). Blood flow and pressure in the larger arteries and veins are predicted using a nonlinear, cross-sectional-area-averaged system of equations for a Newtonian fluid in an elastic tube. Inflow into the main pulmonary artery is obtained from MRI measurements, while pressure entering the left atrium from the main pulmonary vein is kept constant at the normal mean value of 2 mmHg. Each terminal vessel in the network of ‘large’ arteries is connected to its corresponding terminal vein via a network of vessels representing the vascular bed of smaller arteries and veins. We develop and implement an algorithm to calculate the admittance of each vascular bed, using bifurcating structured trees and recursion. The structured-tree models take into account the geometry and material properties of the ‘smaller’ arteries and veins of radii ≥ 50 μ m. We study the effects on flow and pressure associated with three classes of pulmonary hypertension expressed via stiffening of larger and smaller vessels, and vascular rarefaction. The results of simulating these pathological conditions are in agreement with clinical observations, showing that the model has potential for assisting with diagnosis and treatment for circulatory diseases within the lung

    Co-ordinated Airborne Studies in the Tropics (CAST)

    Get PDF
    This is the author accepted manuscript. The final version is available from the American Meteorological Society via http://dx.doi.org/10.1175/BAMS-D-14-00290.1The Co-ordinated Airborne Studies in the Tropics (CAST) project is studying the chemical composition of the atmosphere in the Tropical Warm Pool region to improve understanding of trace gas transport in convection. The main field activities of the CAST (Co-ordinated Airborne Studies in the Tropics) campaign took place in the West Pacific in January/February 2014. The field campaign was based in Guam (13.5°N, 144.8°E) using the UK FAAM BAe-146 atmospheric research aircraft and was coordinated with the ATTREX project with the unmanned Global Hawk and the CONTRAST campaign with the Gulfstream V aircraft. Together, the three aircraft were able to make detailed measurements of atmospheric structure and composition from the ocean surface to 20 km. These measurements are providing new information about the processes influencing halogen and ozone levels in the tropical West Pacific as well as the importance of trace gas transport in convection for the upper troposphere and stratosphere. The FAAM aircraft made a total of 25 flights between 1°S-14°N and 130°-155°E. It was used to sample at altitudes below 8 km with much of the time spent in the marine boundary layer. It measured a range of chemical species, and sampled extensively within the region of main inflow into the strong West Pacific convection. The CAST team also made ground-based measurements of a number of species (including daily ozonesondes) at the Atmospheric Radiation Measurement program site on Manus Island, Papua New Guinea (2.1°S, 147.4°E). This article presents an overview of the CAST project focussing on the design and operation of the West Pacific experiment. It additionally discusses some new developments in CAST, including flights of new instruments on the Global Hawk in February/March 2015.CAST is funded by NERC and STFC, with grant NE/ I030054/1 (lead award), NE/J006262/1, NE/J006238/1, NE/J006181/1, NE/J006211/1, NE/J006061/1, NE/J006157/1, NE/J006203/1, NE/J00619X/1, and NE/J006173/1. N. R. P. Harris was supported by a NERC Advanced Research Fellowship (NE/G014655/1). P. I. Palmer acknowledges his Royal Society Wolfson Research Merit Award. The BAe-146-301 Atmospheric Research Aircraft is flown by Directflight Ltd and managed by the Facility for Airborne Atmospheric Measurements, which is a joint entity of the Natural Environment Research Council and the Met Office. The authors thank the staff at FAAM, Directflight and Avalon Aero who worked so hard toward the success of the aircraft deployment in Guam, especially for their untiring efforts when spending an unforeseen 9 days in Chuuk. We thank the local staff at Chuuk and Palau, as well as the authorities in the Federated States of Micronesia for their help in facilitating our research flights. Special thanks go to the personnel associated with the ARM facility at Manus, Papua New Guinea without whose help the ground-based measurements would not have been possible. Thanks to the British Atmospheric Data Centre (BADC) for hosting our data and the NCAS Atmospheric Measurement Facility for providing the radiosonde and ground-based ozone equipment. Chlorophyll-a data used in Figure 1 were extracted using the Giovanni online data system, maintained by the NASA GES DISC. We also acknowledge the MODIS mission scientists and associated NASA personnel for the production of this data set. Finally we thank many individual associated with the ATTREX and CONTRAST campaigns for their help in the logistical planning, and we would like to single out Jim Bresch for his excellent and freely provided meteorological advice

    ResearchGate versus Google Scholar: Which finds more early citations?

    Get PDF
    ResearchGate has launched its own citation index by extracting citations from documents uploaded to the site and reporting citation counts on article profile pages. Since authors may upload preprints to ResearchGate, it may use these to provide early impact evidence for new papers. This article assesses the whether the number of citations found for recent articles is comparable to other citation indexes using 2675 recently-published library and information science articles. The results show that in March 2017, ResearchGate found less citations than did Google Scholar but more than both Web of Science and Scopus. This held true for the dataset overall and for the six largest journals in it. ResearchGate correlated most strongly with Google Scholar citations, suggesting that ResearchGate is not predominantly tapping a fundamentally different source of data than Google Scholar. Nevertheless, preprint sharing in ResearchGate is substantial enough for authors to take seriously

    Controlling spins in adsorbed molecules by a chemical switch

    Get PDF
    The development of chemical systems with switchable molecular spins could lead to the architecture of materials with controllable magnetic or spintronic properties. Here, we present conclusive evidence that the spin of an organometallic molecule coupled to a ferromagnetic substrate can be switched between magnetic off and on states by a chemical stimulus. This is achieved by nitric oxide (NO) functioning as an axial ligand of cobalt(II)tetraphenylporphyrin (CoTPP) ferromagnetically coupled to nickel thin-film (Ni(001)). On NO addition, the coordination sphere of Co2+ is modified and a NO–CoTPP nitrosyl complex is formed, which corresponds to an off state of the Co spin. Thermal dissociation of NO from the nitrosyl complex restores the on state of the Co spin. The NO-induced reversible off–on switching of surface-adsorbed molecular spins observed here is attributed to a spin trans effect
    corecore