7 research outputs found

    PM10 and PM2.5 concentrations in Central and Eastern Europe:

    No full text
    Between November 1995 and October 1996, particulate matter concentrations (PM10 and PM2.5) were measured in 25 study areas in six Central and Eastern European countries: Bulgaria, Czech Republic, Hungary, Poland, Romania and Slovak Republic. To assess annual mean concentration levels, 24-h averaged concentrations were measured every sixth day on a fixed urban background site using Harvard impactors with a 2.5 and 10 mum cut-point. The concentration of the coarse fraction of PM10 (PM10-2.5) was calculated as the difference between the PM10, and the PM2.5 concentration. Spatial variation within study areas was assessed by additional sampling on one or two urban background sites within each study area for two periods of 1 month. QA/QC procedures were implemented to ensure comparability of results between study areas. A two to threefold concentration range was found between study areas, ranging from an annual mean of 41 to 98 mug m(-3) For PM10, from 29 to 68 mug m(-3) for PM2.5 and from 12 to 40 mug m(-3) for PM10-2.5. The lowest concentrations were found in the Slovak Republic, the highest concentrations in Bulgaria and Poland. The variation in PM10 and PM2.5 concentrations between study areas was about 4 times greater than the spatial variation within study areas suggesting that measurements at a single sampling site sufficiently characterise the exposure of the population in the study areas. PM10 concentrations increased considerably during the heating season, ranging from an average increase of 18 mu gm(-3) in the Slovak Republic to 45 mu gm(-3) in Poland. The increase of PM10 was mainly driven by increases in PM2.5; PM10-2.5 concentrations changed only marginally or even decreased. Overall, the results indicate high levels of particulate air pollution in Central and Eastern Europe with large changes between seasons, likely caused by local heating. (C) 2001 Elsevier Science Ltd. All rights reserved

    Variation of NO2 and NOx concentrations between and within 36 European study areas: Results from the ESCAPE study

    Get PDF
    The ESCAPE study (European Study of Cohorts for Air Pollution Effects) investigates long-term effects of exposure to air pollution on human health in Europe. This paper documents the spatial variation of measured NO2 and NOx concentrations between and within 36 ESCAPE study areas across Europe. In all study areas NO2 and NOx were measured using standardized methods between October 2008 and April 2011. On average, 41 sites were selected per study area, including regional and urban background as well as street sites. The measurements were conducted in three different seasons, using Ogawa badges. Average concentrations for each site were calculated after adjustment for temporal variation using data obtained from a routine monitor background site. Substantial spatial variability was found in NO2 and NOx concentrations between and within study areas; 40% of the overall NO2 variance was attributable to the variability between study areas and 60% to variability within study areas. The corresponding values for NOx were 30% and 70%. The within-area spatial variability was mostly determined by differences between street and urban background concentrations. The street/urban background concentration ratio for NO2 varied between 1.09 and 3.16 across areas. The highest median concentrations were observed in Southern Europe, the lowest in Northern Europe. In conclusion, we found significant contrasts in annual average NO2 and NOx concentrations between and especially within 36 study areas across Europe. Epidemiological long-term studies should therefore consider different approaches for better characterization of the intra-urban contrasts, either by increasing of the number of monitors or by modelling

    Variation of NO2 and NOx concentrations between and within 36 European study areas : results from the ESCAPE study

    No full text
    The ESCAPE study (European Study of Cohorts for Air Pollution Effects) investigates long-term effects of exposure to air pollution on human health in Europe. This paper documents the spatial variation of measured NO2 and NOx concentrations between and within 36 ESCAPE study areas across Europe. In all study areas NO2 and NOx were measured using standardized methods between October 2008 and April 2011. On average, 41 sites were selected per study area, including regional and urban background as well as street sites. The measurements were conducted in three different seasons, using Ogawa badges. Average concentrations for each site were calculated after adjustment for temporal variation using data obtained from a routine monitor background site. Substantial spatial variability was found in NO2 and NOx concentrations between and within study areas; 40% of the overall NO2 variance was attributable to the variability between study areas and 60% to variability within study areas. The corresponding values for NOx were 30% and 70%. The within-area spatial variability was mostly determined by differences between street and urban background concentrations. The street/urban background concentration ratio for NO2 varied between 1.09 and 3.16 across areas. The highest median concentrations were observed in Southern Europe, the lowest in Northern Europe. In conclusion, we found significant contrasts in annual average NO2 and NOx concentrations between and especially within 36 study areas across Europe. Epidemiological long-term studies should therefore consider different approaches for better characterization of the intra-urban contrasts, either by increasing of the number of monitors or by modellingAplinkotyros katedraVytauto Didžiojo universiteta

    Indoor air pollution, physical and comfort parameters related to schoolchildren's health: Data from the European SINPHONIE study

    No full text

    Indoor air pollution, physical and comfort parameters related to schoolchildren's health:Data from the European SINPHONIE study

    No full text
    Substantial knowledge is available on the association of the indoor school environment and its effect among schoolchildren. In the same context, the SINPHONIE (School indoor pollution and health: Observatory network in Europe) conducted a study to collect data and determine the distribution of several indoor air pollutants (IAPs), physical and thermal parameters and their association with eye, skin, upper-, lower respiratory and systemic disorder symptoms during the previous three months. Finally, data from 115 schools in 54 European cities from 23 countries was collected and included 5175 schoolchildren using a harmonized and standardized protocol. The association between exposures and the health outcomes were examined using logistic regression models on individual indoor air pollutants (IAPs); a VOC (volatile organic compound) score defined as the sum of the number of pollutants to which the children were highly exposed (concentration > median of the distribution) in classroom was also introduced to evaluate the multiexposure \u2013 outcome association, while adjusting for several confounding factors. Schoolchildren exposed to above or equal median concentration of PM2.5, benzene, limonene, ozone and radon were at significantly higher odds of suffering from upper, lower airways, eye and systemic disorders. Increased odds were also observed for any symptom (sick school syndrome) among schoolchildren exposed to concentrations of limonene and ozone above median values. Furthermore, the risks for upper and lower airways and systemic disorders significantly increased with the VOCs score. Results also showed that increased ventilation rate was significantly associated with decreased odds of suffering from eye, skin disorders whereas similar association was observed between temperature and upper airways symptoms. The present study provides evidence that exposure to IAPs in schools is associated with allergic and respiratory symptoms in children. Further investigations are needed to confirm our findings
    corecore