118 research outputs found

    The yeast P5 type ATPase, Spf1, regulates manganese transport into the endoplasmic reticulum

    Get PDF
    The endoplasmic reticulum (ER) is a large, multifunctional and essential organelle. Despite intense research, the function of more than a third of ER proteins remains unknown even in the well-studied model organism Saccharomyces cerevisiae. One such protein is Spf1, which is a highly conserved, ER localized, putative P-type ATPase. Deletion of SPF1 causes a wide variety of phenotypes including severe ER stress suggesting that this protein is essential for the normal function of the ER. The closest homologue of Spf1 is the vacuolar P-type ATPase Ypk9 that influences Mn2+ homeostasis. However in vitro reconstitution assays with Spf1 have not yielded insight into its transport specificity. Here we took an in vivo approach to detect the direct and indirect effects of deleting SPF1. We found a specific reduction in the luminal concentration of Mn2+ in ∆spf1 cells and an increase following it’s overexpression. In agreement with the observed loss of luminal Mn2+ we could observe concurrent reduction in many Mn2+-related process in the ER lumen. Conversely, cytosolic Mn2+-dependent processes were increased. Together, these data support a role for Spf1p in Mn2+ transport in the cell. We also demonstrate that the human sequence homologue, ATP13A1, is a functionally conserved orthologue. Since ATP13A1 is highly expressed in developing neuronal tissues and in the brain, this should help in the study of Mn2+-dependent neurological disorders

    Coronary Artery Calcium Scores: Current Thinking and Clinical Applications

    Get PDF
    Most incident coronary disease occurs in previously asymptomatic individuals who were considered to be at a lower risk by traditional screening methods. There is a definite advantage if these individuals could be reclassified into a higher risk category, thereby impacting disease outcomes favorably. Coronary artery calcium scores have been recognized as an independent marker for adverse prognosis in coronary disease. Multiple population based studies have acknowledged the shortcomings of risk prediction models such as the Framingham risk score or the Procam score. The science behind coronary calcium is discussed briefly followed by a review of current thinking on calcium scores. An attempt has been made to summarize the appropriate indications and use of calcium scores

    Functional single nucleotide polymorphisms within the cyclin-dependent kinase inhibitor 2A/2B region affect pancreatic cancer risk

    Get PDF
    The CDKN2A (p16) gene plays a key role in pancreatic cancer etiology. It is one of the most commonly somatically mutated genes in pancreatic cancer, rare germline mutations have been found to be associated with increased risk of developing familiar pancreatic cancer and CDKN2A promoter hyper-methylation has been suggested to play a critical role both in pancreatic cancer onset and prognosis. In addition several unrelated SNPs in the 9p21.3 region, that includes the CDNK2A, CDNK2B and the CDNK2B-AS1 genes, are associated with the development of cancer in various organs. However, association between the common genetic variability in this region and pancreatic cancer risk is not clearly understood. We sought to fill this gap in a case-control study genotyping 13 single nucleotide polymorphisms (SNPs) in 2,857 pancreatic ductal adenocarcinoma (PDAC) patients and 6,111 controls in the context of the Pancreatic Disease Research (PANDoRA) consortium. We found that the A allele of the rs3217992 SNP was associated with an increased pancreatic cancer risk (ORhet=1.14, 95% CI 1.01-1.27, p=0.026, ORhom=1.30, 95% CI 1.12-1.51, p=0.00049). This pleiotropic variant is reported to be a mir-SNP that, by changing the binding site of one or more miRNAs, could influence the normal cell cycle progression and in turn increase PDAC risk. In conclusion, we observed a novel association in a pleiotropic region that has been found to be of key relevance in the susceptibility to various types of cancer and diabetes suggesting that the CDKN2A/B locus could represent a genetic link between diabetes and pancreatic cancer risk

    Evidence for PTGER4, PSCA, and MBOAT7 as risk genes for gastric cancer on the genome and transcriptome level

    Get PDF
    Genetic associations between variants on chromosome 5p13 and 8q24 and gastric cancer (GC) have been previously reported in the Asian population. We aimed to replicate these findings and to characterize the associations at the genome and transcriptome level. We performed a fine-mapping association study in 1926 GC patients and 2012 controls of European descent using high dense SNP marker sets on both chromosomal regions. Next, we performed expression quantitative trait locus (eQTL) analyses using gastric transcriptome data from 143 individuals focusing on the GC associated variants. On chromosome 5p13 the strongest association was observed at rs6872282 (P = 2.53 × 10-04) and on chromosome 8q24 at rs2585176 (P = 1.09 × 10-09). On chromosome 5p13 we found cis-eQTL effects with an upregulation of PTGER4 expression in GC risk allele carrier (P = 9.27 × 10-11). On chromosome 8q24 we observed cis-eQTL effects with an upregulation of PSCA expression in GC risk allele carrier (P = 2.17 × 10-47). In addition, we found trans-eQTL effects for the same variants on 8q24 with a downregulation of MBOAT7 expression in GC risk allele carrier (P = 3.11 × 10-09). In summary, we confirmed and refined the previously reported GC associations at both chromosomal regions. Our data point to shared etiological factors between Asians and Europeans. Furthermore, our data imply an upregulated expression of PTGER4 and PSCA as well as a downregulated expression of MBOAT7 in gastric tissue as risk-conferring GC pathomechanisms

    Improving a branch-and-bound approach for the degree-constrained minimum spanning tree problem with LKH

    Get PDF
    The degree-constrained minimum spanning tree problem, which involves finding a minimum spanning tree of a given graph with upper bounds on the vertex degrees, has found multiple applications in several domains. In this paper, we propose a novel CP approach to tackle this problem where we extend a recent branch-and-bound approach with an adaptation of the LKH local search heuristic to deal with trees instead of tours. Every time a solution is found, it is locally optimised by our new heuristic, thus yielding a tightened cut. Our experimental evaluation shows that this significantly speeds up the branch-and-bound search and hence closes the performance gap to the state-of-the-art bottom-up CP approach

    Protein quality control: the who’s who, the where’s and therapeutic escapes

    Get PDF
    In cells the quality of newly synthesized proteins is monitored in regard to proper folding and correct assembly in the early secretory pathway, the cytosol and the nucleoplasm. Proteins recognized as non-native in the ER will be removed and degraded by a process termed ERAD. ERAD of aberrant proteins is accompanied by various changes of cellular organelles and results in protein folding diseases. This review focuses on how the immunocytochemical labeling and electron microscopic analyses have helped to disclose the in situ subcellular distribution pattern of some of the key machinery proteins of the cellular protein quality control, the organelle changes due to the presence of misfolded proteins, and the efficiency of synthetic chaperones to rescue disease-causing trafficking defects of aberrant proteins

    Disposable sensors in diagnostics, food and environmental monitoring

    Get PDF
    Disposable sensors are low‐cost and easy‐to‐use sensing devices intended for short‐term or rapid single‐point measurements. The growing demand for fast, accessible, and reliable information in a vastly connected world makes disposable sensors increasingly important. The areas of application for such devices are numerous, ranging from pharmaceutical, agricultural, environmental, forensic, and food sciences to wearables and clinical diagnostics, especially in resource‐limited settings. The capabilities of disposable sensors can extend beyond measuring traditional physical quantities (for example, temperature or pressure); they can provide critical chemical and biological information (chemo‐ and biosensors) that can be digitized and made available to users and centralized/decentralized facilities for data storage, remotely. These features could pave the way for new classes of low‐cost systems for health, food, and environmental monitoring that can democratize sensing across the globe. Here, a brief insight into the materials and basics of sensors (methods of transduction, molecular recognition, and amplification) is provided followed by a comprehensive and critical overview of the disposable sensors currently used for medical diagnostics, food, and environmental analysis. Finally, views on how the field of disposable sensing devices will continue its evolution are discussed, including the future trends, challenges, and opportunities

    The disruption of proteostasis in neurodegenerative diseases

    Get PDF
    Cells count on surveillance systems to monitor and protect the cellular proteome which, besides being highly heterogeneous, is constantly being challenged by intrinsic and environmental factors. In this context, the proteostasis network (PN) is essential to achieve a stable and functional proteome. Disruption of the PN is associated with aging and can lead to and/or potentiate the occurrence of many neurodegenerative diseases (ND). This not only emphasizes the importance of the PN in health span and aging but also how its modulation can be a potential target for intervention and treatment of human diseases.info:eu-repo/semantics/publishedVersio
    corecore