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Abstract. The degree-constrained minimum spanning tree problem,
which involves finding a minimum spanning tree of a given graph with
upper bounds on the vertex degrees, has found multiple applications in
several domains. In this paper, we propose a novel CP approach to tackle
this problem where we extend a recent branch-and-bound approach with
an adaptation of the LKH local search heuristic to deal with trees instead
of tours. Every time a solution is found, it is locally optimised by our
new heuristic, thus yielding a tightened cut. Our experimental evaluation
shows that this significantly speeds up the branch-and-bound search and
hence closes the performance gap to the state-of-the-art bottom-up CP
approach.

Keywords: Degree-Constrained Minimum Spanning Tree · Branch-and-
Bound · Local Seach · LKH

1 Introduction

The degree constrained minimum spanning tree problem (DCMSTP) involves
finding a minimum spanning tree (MST) of a given graph where the degree of
every vertex is bounded. Minimum spanning trees are commonly used in the
design of protocols for wireless sensor networks [30]. Having upper bounds on
the degree of the vertices of a tree is a very common constraint in the design of
such protocols due to many factors (e.g., bounded number of radios per vertex,
limited capacity to store routing tables, etc) [14].

The data collection process (convergecasting) in wireless sensor networks is
commonly accomplished by using a routing tree between the sensors [5, 1, 20],
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mostly due to time and energy efficiency reasons. The authors of [5] showed
that the network topology is one of the main efficiency bottlenecks and sig-
nificantly improved the practical performance by enforcing degree constraints
on the vertices of the routing tree. Additionally, degree constraints are crucial
in situations with battery-driven sensors in inaccessible terrains [20]. Similarly,
these constraints can play an important role in the diversion of the flow to avoid
interdicted links that result from cyber attacks in cyber-physical networks [25].

Another area of application is Software Defined Networks (SDNs). An SDN
attempts to centralise network intelligence in one network component by disasso-
ciating the forwarding process of network packets (data plane) from the routing
process (control plane). The control plane consists of one or more controllers
which are considered as the brain of the SDN where the whole intelligence is
incorporated [8]. The OpenFlow protocol is an open standard and is the main
and most widespread enabling technology of the SDN architecture. An Open-
Flow switch is equipped with a Forwarding Information Base (FIB) table, storing
matching rules for the incoming packets, one or more actions (e.g., forward to a
port, drop the packet, or modify its header) and counters. If an incoming packet
matches a rule in the FIB, the corresponding action is taken and the counters
are updated [26]. Reducing the energy impact of SDNs is an important challenge
nowadays. Researchers have proposed protocols based on MST to address this
challenge [26, 23]. The limited space for storing FIB tables seems to motivate
the degree constraint on the vertices naturally.

DCMSTP subsumes the path version of the Traveling Salesman Problem
(TSP), where one is interested in finding a Hamiltonian path of minimum cost.
If we set the degree bound to 2 for each vertex, the Hamiltonian path prob-
lem reduces to the DCMSTP, and thus it is NP-hard [13]. While several CP
approaches have managed to push the state-of-the-art of the TSP by primar-
ily taking advantage of relaxations of the problem [10, 12, 2, 11, 17], we are only
aware of one CP approach that has managed to do the same for DCMSTP [6].

A common feature in the applications we have mentioned is that the user is
not necessarily interested in finding an optimal solution. In reality, the user is
much more concerned about the time spent in the computation of the solution
and is usually satisfied with a solution that is close to the optimal one. For
instance, consider the case where a wireless network has to be restored after
a link failure to a, possibly non-optimal, acceptable working state as fast as
possible and only afterwards make further adjustments to save costs. This is
certainly an issue with the recent bottom-up approach proposed in [6] since it
only produces a satisfiable solution (the optimal one) at the end of the search
process, besides the typically bad initial one. Branch-and-bound approaches do
not have this drawback but suffer from poor performance due to the lack of good
upper bounds.

In this paper, we propose a novel CP approach to tackle the DCMSTP where
we extend a branch-and-bound approach with a local search heuristic inspired by
LKH [16], which is the most widely used heuristic method for TSP, to combine
the benefits of a branch-and-bound approach with an acceptable runtime. We
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apply the heuristic to every found solution to improve its cut value, which not
only skips a lot of intermediate solutions, but also strengthens the filtering of all
used propagators. Our experiments show that our approach is competitive with
respect to the state-of-the-art when it comes to CP [6] and is preferable when it
comes to finding close-to-optimal solutions.

2 Background

Let G = (V,E) be an undirected graph with integer edge costs c : E → Z and
a degree upper bound for each vertex, given by the mapping d : V → N. For
all vertices v ∈ V let δ(v) denote the set of incident edges of v. We want to
find a spanning tree, satisfying the degree constraints for all vertices v ∈ V :
|δ(v)| ≤ d(v), of minimum total cost, which is the sum of all edge costs in the
tree.

A typical CP formulation is:

Minimize: Z (1)

s.t. WST(G,Z, c) (2)

|δ(v)| = Dv ≤ d(v) ∀v ∈ V (3)

It consists of a graph variable G, an integer variable Z representing an upper
bound on the total cost, and integer degree variables D. A graph variable is an
abstraction over the edge set of the graph, where the lower bound forms the set
of already fixed (mandatory) edges and the upper bound is a superset of the
lower bound. The difference between the upper bound and the lower bound is
the set of optional edges [4]. The weighted spanning tree constraint WST(G,Z,w)
(2) forces G to contain a spanning tree of cost at most Z [28]. Additionally, we
have the degree upper bound constraints (3). Due to the minimization Z will
become the total cost of a spanning tree eventually.

The current state-of-the-art CP approach [6] combines (2) and (3) into the
powerful DCWST(G,Z,w,D) constraint. It is a direct generalization of the WST

constraint and uses an adapted sub-gradient method of [15] to provide a lower
bound on the total cost, typically much tighter than a normal minimum spanning
tree would yield. On top of this model, the authors of [6] additionally adapted the
Last-Conflict search strategy [18] to graph variables, which significantly improves
the performance.

As a search procedure, they suggest to first greedily find any feasible solution,
which is needed for the DCWST constraint, and continue with a simple bottom-
up approach. They fix the total cost variable Z to a lower bound obtained via
the pruning performed by the DCWST constraint and then branch on the graph
variable. If a feasible solution is found it is guaranteed to be optimal. Otherwise,
the lower bound is increased by one and the process is repeated.

Due to the lack of a good upper bounding heuristic on the cost, a basic
branch-and-bound search is typically much slower than the bottom-up approach,
as can be seen in our experiments.
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Therefore, we suggest an improved branch-and-bound approach, which tack-
les this problem. Our ideas are inspired by the local search technique k-Opt [21]
for the TSP and especially its popular generalization the Lin-Kernighan algo-
rithm [22]. k-Opt has recently been applied to the DCMSTP [19], but using an
incomplete local search approach, and without using LKH. At each step, they
test all possible k-Opt swaps, including those which would change the vertex
degree. In contrast, our approach is complete, and motivated by LKH, we check
only a subset of possible moves.

The idea of k-Opt is to iteratively perform improving k-Opt swaps, which
consist of swapping k edges of the current spanning tree (or tour in the TSP
case) with k new ones to reduce the total cost of the graph until no more swaps
can be found. As the original k-Opt swaps for tours, we consider only moves
that do not change the vertex degrees. The case k = 2 is particularly simple
because for any spanning tree there is only one correct way to reconnect two
removed edges without violating the connectivity of the tree and changing the
vertex degrees (see fig. 1):

Proposition 1. Two non-incident edges {v, w} and {x, y} of a tree can be
exchanged with the edges {v, y} and {w, x} without violating the tree property of
the graph and changing the vertex degrees if and only if the (unique) connecting
path between v and x is not using w or y.

v w

x y

v

x y

w

(a) x is closer than y to v

v w

x y

v

x y

w

(b) y is closer than x to v

Fig. 1: If we remove two edges {v, w} and {x, y} from a tree, either (a)
{v, y}, {w, x} or (b) {v, x}, {w, y} can be used to reconnect the tree without
changing the vertex degrees. Depending on whether x or y is closer to v in the
tree without using w determines the valid swap. The dashed parts represent the
rest of the tree.

Indeed the tree property is maintained as no cycle is introduced with the
addition of edges {v, y} and {w, x} since these edges are connecting the discon-
nected components that were created by the removal of the edges {v, w} and
{x, y}. Similarly, the degrees are unmodified as the only vertices affected by the
change are v, y, w and x, which trivially maintain their original degrees.

The quality of this local optimisation is strongly influenced by k. Typically,
k = 2 is not enough and therefore k ≥ 3 is used to produce satisfactory results.
However, this is also the main drawback of the k-Opt approach, since to perform
one single edge swap the algorithm has to check all possible edge sets of size k,
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resulting in a runtime of O(|V |k), which is too slow for typical real-world graphs
and an appropriate k.

This problem motivates the Lin-Kernighan algorithm [22] for the TSP uni-
fying k-Opt swaps by dynamically choosing k during runtime. The main idea is
to start with 2-Opt swaps and only consider larger ones if needed. The currently
available implementation of the Lin-Kernighan algorithm [16], called LKH, is
one of the best-performing methods to heuristically solve the TSP in practice
(see e.g. [29, 24] for recent developments).

One of the main difference to k-Opt is that LKH focuses on a certain subset
of possible moves called sequential k-Opt swaps, being a k-Opt swap, which can
be decomposed into k − 1 many 2-Opt swaps, applied one after another each
sharing an edge with the previous one. Additionally, the set of potential edge
candidates is typically restricted to heuristically promising ones, for example
only edges connecting nearest neighbours (see [16] for more details).

Motivated by the impressive results for the TSP, we propose to adapt LKH
to spanning trees and use it on all found solutions of a branch-and-bound CP
approach, in the sense of [9], to tighten the cuts, while still keeping the search
complete.

3 Improving Solutions with LKH

As it is not possible to apply the state-of-the-art LKH implementation [16] to our
problem due to its inherent design for tours, we decided to re-implement a bare-
bones version of it using the mentioned sequential k-Opt swaps and the nearest-
neighbour heuristic to use it directly in our CP setting. To further simplify the
implementation we set an upper bound on the largest allowed k.

Since sequential k-Opt swaps can be decomposed into 2-Opt swaps (see [16])
we have to only find an efficient way to perform 2-Opt swaps. The main challenge
here is to decide which one of the two possible swapping moves (see fig. 1) has to
be performed to keep connectivity and the vertex degrees. Using proposition 1
the problem simplifies to checking the vertex distances in the tree. Given a first
fixed edge {v, w} of an edge pair candidate {v, w} and {x, y}, the question is
whether x or y is closer to v (see fig. 2).

To efficiently perform this check, we can use any graph traversal algorithm
(like BFS or DFS) starting from v without visiting w. By proposition 1 every
traversed edge {x, y}, where x is reached before y, can be swapped using {v, y}
and {w, x}. The same procedure for w is reversed, resulting in the opposite swap
{v, x} and {w, y}. In total, this yields a linear runtime to identify all valid swaps
for a fixed edge.

As mentioned above, instead of trying all these edge pairs we only perform
promising ones using the following nearest-neighbour heuristic. We first sort the
neighbours of each vertex by increasing distance, which can be performed once
at the beginning of the branch-and-bound approach. Then we only apply an
edge swap, if one of the new edges, say {v, x}, connects two close vertices v and
x, where close means being one of the nearest neighbours, typically restricted to
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v w
x x′

y′y

Fig. 2: Fixing the edge {v, w} as the first part of an edge pair determines the
correct way of swapping it together with any non-incident second edge. For all
the (dashed) edges, which are reachable from v without using w, the correct
way of swapping is to connect w with the vertex x reached first and v to the
vertex y after it. For all the (dotted) edges reachable from w without using v,
the opposite swap has to be performed using {w, y′} and {v, x′}, connecting v
to the vertex x′ reached first.

3-5 neighbours. To prevent checking an edge pair twice, we can enforce v < x
with some fixed order on the vertices as a condition for any edge pair candidate.
We want to emphasize that this local optimisation does not change the vertex
degrees.

To sum up, our proposed approach is the following. Exactly as [6] we start
with an initial greedy solution, but then apply a branch-and-bound search. Every
time a solution is found, including the greedy one, it is locally optimised with
LKH to reduce its total cost, hence yielding a better cut.

This significantly speeds up the branch-and-bound search, as can be seen
in the experiments, since on the one hand, we can skip a lot of intermediate
solutions and on the other hand, the improved cuts strengthen the filtering of
the used propagators.

4 Experiments

In the following section, we compare our new approach with the state-of-the-art
bottom-up CP approach from [6] and to a branch-and-bound search without our
additional local optimisation on two benchmark datasets DE and ANDINST [3].
We implemented our approach in Java 8 on top of the CP library Choco 4.0.6
[27] with Choco-graph 4.2.4 [7] and made it publicly available1. All experiments
are run on a Debian Linux 9 workstation with an Intel R© Xeon R© X5675 CPU
and 128GB of total RAM. A time limit of 3 hours is used.

In our approach, we set the highest k for any k-Opt swap, as well as the
number of nearest neighbours to 3. These parameters are a tradeoff between
runtime and efficiency of the local optimisation. We determined these empirically,
as they seemed to be the most appropriate for our test datasets. Due to space
limitations, we omit a discussion about the parameter selection.

Motivated by our applications we also record the time to reach a solution of
cost 1% close to the optimum, i.e. smaller than or equal to 1.01 times the optimal

1 https://github.com/mthiessen/CP-LKH-DCMST
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value. For the bottom-up approach, this almost always coincides with the overall
runtime, because the bottom-up approach does not generate any intermediate
solutions, besides the typically bad initial one.

Fig. 3: Runtimes on DE instances

In fig. 3 we depict the runtimes on the DE instances. The striped parts of the
branch-and-bound approaches indicate the time to reach a solution value 1%
close to optimal. Our adapted approach is much faster than the basic branch-
and-bound. We also observe that the time to reach 1% optimality almost co-
incides with the overall runtime for the basic branch-and-bound, while drops
significantly for our adapted approach.

On most of the instances, the runtime of the bottom-up approach is compa-
rable to our approach. In three instances the bottom-up approach is significantly
better, but on the other hand on three other instances, our approach performs
better. If we look at the runtime to reach 1% the situation improves. On all
but two instances our approach finds such solutions faster than the bottom-up
approach. This indicates that our approach is preferable over the bottom-up
approach in a dynamic environment, such as in our mentioned applications.

Fig. 4: Runtimes on ANDINST instances
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On the ANDINST dataset (see fig. 4), our approach is better than the basic
branch-and-bound on most instances. Unfortunately, our approach is slower than
the basic branch-and-bound on some larger instances. We are convinced that a
more sophisticated implementation of LKH on trees would resolve this issue.

If we compare our approach directly to the bottom-up approach, the latter
is always faster than ours in finding an optimum solution. This is because the
lower bound used in the bottom-up approach is very close to the optimum for
the ANDINST dataset and so only a few bottom-up steps, typically 1-2, have to
be performed.

Again the situation is a lot better if we compare the runtimes to reach 1%.
Here our approach on all but the last instance beats the bottom-up, often with
a large margin.

Overall the empirical results suggest preferring our adapted branch-and-
bound approach over the basic one. The situation is much more diverse in the
comparison of the bottom-up approach to ours, where most of the time the
results are either similar or in favour of the bottom-up approach. Nevertheless,
taking the time to reach 1% into account shows the benefits of using our adapted
approach.

5 Conclusion

We have extended a CP based branch-and-bound approach to the degree con-
strained minimum spanning tree problem with an adaptation of the LKH local
search heuristic. In this adaptation, the heuristic deals with trees instead of
tours. The branch-and-bound search is significantly enhanced by this adapta-
tion as shown in the experiments, which makes our approach competitive with
the state-of-the-art bottom-up CP approach on some well-known benchmarks.
We have discussed and shown empirically that our branch-and-bound approach
is preferable in a dynamic environment, where close to optimal solutions are of
interest.

This study is a proof-of-concept and indicates the high potential of an adapted
branch-and-bound approach since there is a lot to improve. Especially, apart
from improving the implementation of the adapted LKH, we plan to focus on
Euclidean instances and build propagators especially for these cases. We also
plan to generate nogoods and adapt our approach to deal with dynamic envi-
ronments where edges are frequently changing. Lastly, generalising the idea of
improving intermediate solutions by heuristics to related problems, such as the
TSP, seems to be a promising research direction.

Acknowledgement. The authors thank Keld Helsgaun from the Roskilde
University, Denmark for helpful discussions.
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