94 research outputs found

    Press discourses on ecological crises in the UK, Israel, and Hungary

    Get PDF
    This article explores the relationships between political projects of belonging and approaches to environmental and climate ecological crises via comparing centre-right and centre-left newspapers in the UK, Israel and Hungary. Our theoretical framework draws on Nira Yuval-Davis's work on the politics of belonging as a way of understanding and framing the different political projects that accompany reporting on ecological issues. Focusing on selected national and international case studies on these issues at the centre of public debate during the last two decades, the paper explores and compares these relationships by examining the eco-relational, spatial, temporal and normative framing dimensions of the political projects of belonging as expressed in these articles. The findings of the analysis show that, despite different cultural and historical contexts, the most significant dividing line is not among countries but between the different political projects of belonging of the newspapers. This can be seen even when dealing with country-specific, rather than international, case studies. Overall, centre-right newspapers tend to focus on narrow nationalist interests concerning the climate crisis and do not produce discourses of urgency to resolve the crisis except when reporting on major international political agendas. They are also more inclined to focus on the economic aspects of such efforts and how they would affect the “people”. The centre-left press, on the other hand, tends to prioritise ecological issues much more; it has wider global and planetary interdependent constructions of belonging and engages in the production of discourses of urgency in an attempt to solve the crisis and avoid future catastrophes. However, even in the centre-left press, especially in the UK, a tendency to remain within a western-centric perspective was observed

    Annulment Actions and the V4: Taking Legislative Conflicts Before the CJEU

    Get PDF
    The EU member states have been using the action for annulment to challenge the legality of EU measures while pursuing a range of non-legal and essentially political motivations. This also holds for the V4 member states, which have also resorted to annulment actions to judicialize their legislative conflicts within the EU before the CJEU. Among the V4, Poland has been the most frequent litigant, using this institutional tool increasingly actively during the last 10 years. Poland’s behavior appears to confirm expectations of differentiation among this group of member states. It also coincides with a period of political change marked by deep legislative conflicts within the EU. The V4 annulment challenges against EU legislative measures usually made a genuine effort to achieve the legal objective of annulling the challenged legal act. However, there is evidence that they also pursued certain political motivations or a combination of them. These could include the securing of gains in domestic politics, avoiding the local costs of an EU policy misfit and/or promoting a preferred policy position, and/or influencing EU competence arrangements. In a few cases, the litigant member state aimed to avoid concrete material disadvantages. Securing a legal interpretation from the CJEU that would influence the behavior of other EU actors or clarify the law affecting the position of the applicant member state also motivated some of the V4 legal challenges

    Rotation intrinsic spin coupling--the parallelism description

    Get PDF
    For the Dirac particle in the rotational system, the rotation induced inertia effect is analogously treated as the modification of the "spin connection" on the Dirac equation in the flat spacetime, which is determined by the equivalent tetrad. From the point of view of parallelism description of spacetime, the obtained torsion axial-vector is just the rotational angular velocity, which is included in the "spin connection". Furthermore the axial-vector spin coupling induced spin precession is just the rotation-spin(1/2) interaction predicted by Mashhoon. Our derivation treatment is straightforward and simplified in the geometrical meaning and physical conception, however the obtained conclusions are consistent with that of the other previous work.Comment: 10 pages, no figur

    Temperature dependence of binary and ternary recombination of H3+ ions with electron

    Get PDF
    We study binary and the recently discovered process of ternary He-assisted recombination of H3+ ions with electrons in a low temperature afterglow plasma. The experiments are carried out over a broad range of pressures and temperatures of an afterglow plasma in a helium buffer gas. Binary and He-assisted ternary recombination are observed and the corresponding recombination rate coefficients are extracted for temperatures from 77 K to 330 K. We describe the observed ternary recombination as a two-step mechanism: First, a rotationally-excited long-lived neutral molecule H3* is formed in electron-H3+ collisions. Second, the H3* molecule collides with a helium atom that leads to the formation of a very long-lived Rydberg state with high orbital momentum. We present calculations of the lifetimes of H3* and of the ternary recombination rate coefficients for para and ortho-H3+. The calculations show a large difference between the ternary recombination rate coefficients of ortho- and para-H3+ at temperatures below 300 K. The measured binary and ternary rate coefficients are in reasonable agreement with the calculated values.Comment: 15 page

    Recombination of H3+ Ions in the Afterglow of a He-Ar-H2 Plasma

    Full text link
    Recombination of H3+ with electrons was studied in a low temperature plasma in helium. The plasma recombination rate is driven by two body, H3+ + e, and three-body, H3+ + e + He, processes with the rate coefficients 7.5x10^{-8}cm3/s and 2.8x10^{-25}cm6/s correspondingly at 260K. The two-body rate coefficient is in excellent agreement with results from storage ring experiments and theoretical calculations. We suggest that the three-body recombination involves formation of highly excited Rydberg neutral H3 followed by an l- or m- changing collision with He. Plasma electron spectroscopy indicates the presence of H3.Comment: 4 figure

    Temperature dependence of binary and ternary recombination of H3+ ions with electron

    Get PDF
    We study binary and the recently discovered process of ternary He-assisted recombination of H3+ ions with electrons in a low temperature afterglow plasma. The experiments are carried out over a broad range of pressures and temperatures of an afterglow plasma in a helium buffer gas. Binary and He-assisted ternary recombination are observed and the corresponding recombination rate coefficients are extracted for temperatures from 77 K to 330 K. We describe the observed ternary recombination as a two-step mechanism: First, a rotationally-excited long-lived neutral molecule H3* is formed in electron-H3+ collisions. Second, the H3* molecule collides with a helium atom that leads to the formation of a very long-lived Rydberg state with high orbital momentum. We present calculations of the lifetimes of H3* and of the ternary recombination rate coefficients for para and ortho-H3+. The calculations show a large difference between the ternary recombination rate coefficients of ortho- and para-H3+ at temperatures below 300 K. The measured binary and ternary rate coefficients are in reasonable agreement with the calculated values.Comment: 15 page

    Propagation-enhanced generation of intense high-harmonic continua in the 100-eV spectral region

    Get PDF
    The study of core electron dynamics through nonlinear spectroscopy requires intense isolated attosecond extreme ultraviolet or even X-ray pulses. A robust way to produce these pulses is high-harmonic generation (HHG) in a gas medium. However, the energy upscaling of the process depends on a very demanding next-generation laser technology that provides multi-terawatt (TW) laser pulses with few-optical-cycle duration and controlled electric field. Here, we revisit the HHG process driven by 16-TW sub-two-cycle laser pulses to reach high intensity in the 100-eV spectral region and beyond. We show that the combination of above barrier-suppression intensity with a long generation medium significantly enhances the isolation of attosecond pulses compared to lower intensities and/or shorter media and this way reduces the pulse duration as well as field-stability requirements on the laser driver. This novel regime facilitates the real-time observation of electron dynamics at the attosecond timescale in atoms, molecules, and solids

    Overview of power exhaust experiments in the COMPASS divertor with liquid metals

    Get PDF
    Power handling experiments with a special liquid metal divertor module based on the capillary porous system technology were performed in the tokamak COMPASS. The performance of two metals (Li and LiSn alloy) were tested for the first time in a divertor under ELMy H-mode conditions. No damage of the capillary mesh and a good exhaust capability were observed for both metals in two separate experiments with up to 12 MW/m(2) of deposited perpendicular, inter-ELM steady-state heat flux and with ELMs of relative energy similar to 3% and a local peak energy fluence at the module similar to 15 kJ.m(-2). No droplets were directly ejected from the mesh top surface and for the LiSn experiment, no contamination of the core and SOL plasmas by Sn was observed. The elemental depth profile analysis of 14 stainless-steel samples located around the vacuum vessel for each experiment provides information about the migration of evaporated/redeposited liquid elements

    Modeling of COMPASS tokamak divertor liquid metal experiments

    Get PDF
    Two small liquid metal targets based on the capillary porous structure were exposed to the divertor plasma of the tokamak COMPASS. The first target was wetted by pure lithium and the second one by a lithium-tin alloy, both releasing mainly lithium atoms (sputtering and evaporation) when exposed to plasma. Due to poorly conductive target material and steep surface inclination (implying the surface-perpendicular plasma heat flux 12-17 MW/m(2)) for 0.1-0.2 s, the LiSn target has reached 900 degrees C under ELMy H-mode. A model of heat conduction is developed and serves to evaluate the lithium sputtering and evaporation and, thus, the surface cooling by the released lithium and consequent radiative shielding. In these conditions, cooling of the surface by the latent heat of vapor did not exceed 1 MW/m(2). About 10(19) lithium atoms were evaporated (comparable to the COMPASS 1 m(3) plasma deuterium content), local Li pressure exceeded the deuterium plasma pressure. Since the radiating Li vapor cloud spreads over a sphere much larger than the hot spot, its cooling effect is negligible (0.2 MW/m(2)). We also predict zero lithium prompt redeposition, consistent with our observation.

    Molecular excitation in the Interstellar Medium: recent advances in collisional, radiative and chemical processes

    Full text link
    We review the different excitation processes in the interstellar mediumComment: Accepted in Chem. Re
    • 

    corecore