We study binary and the recently discovered process of ternary He-assisted
recombination of H3+ ions with electrons in a low temperature afterglow plasma.
The experiments are carried out over a broad range of pressures and
temperatures of an afterglow plasma in a helium buffer gas. Binary and
He-assisted ternary recombination are observed and the corresponding
recombination rate coefficients are extracted for temperatures from 77 K to 330
K. We describe the observed ternary recombination as a two-step mechanism:
First, a rotationally-excited long-lived neutral molecule H3* is formed in
electron-H3+ collisions. Second, the H3* molecule collides with a helium atom
that leads to the formation of a very long-lived Rydberg state with high
orbital momentum. We present calculations of the lifetimes of H3* and of the
ternary recombination rate coefficients for para and ortho-H3+. The
calculations show a large difference between the ternary recombination rate
coefficients of ortho- and para-H3+ at temperatures below 300 K. The measured
binary and ternary rate coefficients are in reasonable agreement with the
calculated values.Comment: 15 page