4 research outputs found

    Isotemporal substitution of inactive time with physical activity and time in bed: cross-sectional associations with cardiometabolic health in the PREDIMEDPlus study

    Get PDF
    Background: This study explored the association between inactive time and measures of adiposity, clinical parameters, obesity, type 2 diabetes and metabolic syndrome components. It further examined the impact of reallocating inactive time to time in bed, light physical activity (LPA) or moderate-to-vigorous physical activity (MVPA) on cardio-metabolic risk factors, including measures of adiposity and body composition, biochemical parameters and blood pressure in older adults. Methods: This is a cross-sectional analysis of baseline data from 2189 Caucasian men and women (age 55-75 years, BMI 27-40 Kg/m2) from the PREDIMED-Plus study (http://www.predimedplus.com/). All participants had ≥3 components of the metabolic syndrome. Inactive time, physical activity and time in bed were objectively determined using triaxial accelerometers GENEActiv during 7 days (ActivInsights Ltd., Kimbolton, United Kingdom). Multiple adjusted linear and logistic regression models were used. Isotemporal substitution regression modelling was performed to assess the relationship of replacing the amount of time spent in one activity for another, on each outcome, including measures of adiposity and body composition, biochemical parameters and blood pressure in older adults. Results: Inactive time was associated with indicators of obesity and the metabolic syndrome. Reallocating 30 min per day of inactive time to 30 min per day of time in bed was associated with lower BMI, waist circumference and glycated hemoglobin (HbA1c) (all p-values < 0.05). Reallocating 30 min per day of inactive time with 30 min per day of LPA or MVPA was associated with lower BMI, waist circumference, total fat, visceral adipose tissue, HbA1c, glucose, triglycerides, and higher body muscle mass and HDL cholesterol (all p-values < 0.05). Conclusions: Inactive time was associated with a poor cardio-metabolic profile. Isotemporal substitution of inactive time with MVPA and LPA or time in bed could have beneficial impact on cardio-metabolic health

    Understanding the health of lorry drivers in context: A critical discourse analysis

    Get PDF
    This article moves beyond previous attempts to understand health problems in the lives of professional lorry drivers by placing the study of drivers’ health in a wider social and cultural context. A combination of methods including focus groups, interviews and observations were used to collect data from a group of 24 lorry drivers working at a large transport company in the United Kingdom. Employing a critical discourse analysis, we identified the dominant discourses and subject positions shaping the formation of drivers’ health and lifestyle choices. This analysis was systematically combined with an exploration of the gendered ways in which an almost exclusively male workforce talked about health. Findings revealed that drivers were constituted within a neoliberal economic discourse, which is reflective of the broader social structure, and which partly restricted drivers’ opportunities for healthy living. Concurrently, drivers adopted the subject position of ‘average man’ as a way of defending their personal and masculine status in regards to health and to justify jettisoning approaches to healthy living that were deemed too extreme or irrational in the face of the constraints of their working lives. Suggestions for driver health promotion include refocusing on the social and cultural – rather than individual – underpinnings of driver health issues and a move away from moralistic approaches to health promotion

    Sleep variability in UK long distance heavy goods vehicle drivers

    No full text
    Objectives Sleep variability levels are unknown in heavy goods vehicle (HGV) drivers yet are associated with adverse health outcomes and reduced driver vigilance when high. Methods 233 HGV drivers recruited across 25 UK depots provided sleep variability, sleep duration and sleep efficiency data via wrist-worn accelerometry (GENEActiv) over 8-days. Sleep variability indicators included social jetlag (the difference in mid-point of the sleep window between work and non-workdays), and intra-individual variability of sleep onset time, out of bed time and sleep duration. Results 53% of drivers experienced social jetlag (≥1-hour) and 27% experienced high (>2-hours) social jetlag. Drivers with the highest sleep variability had the shortest sleep duration and lowest sleep efficiency during workdays. Conclusions Drivers with high sleep variability may experience more fatigue when driving given the poor sleep outcomes during workdays observed.</p

    Isotemporal substitution of inactive time with physical activity and time in bed: cross-sectional associations with cardiometabolic health in the PREDIMED-Plus study

    Get PDF
    Background: This study explored the association between inactive time and measures of adiposity, clinical parameters, obesity, type 2 diabetes and metabolic syndrome components. It further examined the impact of reallocating inactive time to time in bed, light physical activity (LPA) or moderate-to-vigorous physical activity (MVPA) on cardio-metabolic risk factors, including measures of adiposity and body composition, biochemical parameters and blood pressure in older adults. Methods: This is a cross-sectional analysis of baseline data from 2189 Caucasian men and women (age 55-75 years, BMI 27-40 Kg/m2) from the PREDIMED-Plus study (http://www.predimedplus.com/). All participants had ≥3 components of the metabolic syndrome. Inactive time, physical activity and time in bed were objectively determined using triaxial accelerometers GENEActiv during 7 days (ActivInsights Ltd., Kimbolton, United Kingdom). Multiple adjusted linear and logistic regression models were used. Isotemporal substitution regression modelling was performed to assess the relationship of replacing the amount of time spent in one activity for another, on each outcome, including measures of adiposity and body composition, biochemical parameters and blood pressure in older adults. Results: Inactive time was associated with indicators of obesity and the metabolic syndrome. Reallocating 30 min per day of inactive time to 30 min per day of time in bed was associated with lower BMI, waist circumference and glycated hemoglobin (HbA1c) (all p-values < 0.05). Reallocating 30 min per day of inactive time with 30 min per day of LPA or MVPA was associated with lower BMI, waist circumference, total fat, visceral adipose tissue, HbA1c, glucose, triglycerides, and higher body muscle mass and HDL cholesterol (all p-values < 0.05). Conclusions: Inactive time was associated with a poor cardio-metabolic profile. Isotemporal substitution of inactive time with MVPA and LPA or time in bed could have beneficial impact on cardio-metabolic health. Trial registration: The trial was registered at the International Standard Randomized Controlled Trial (ISRCTN: http://www.isrctn.com/ISRCTN89898870) with number 89898870 and registration date of 24 July 2014, retrospectively registered.The PREDIMED-Plus trial was supported by the official funding agency for biomedical research of the Spanish government, ISCIII through the Fondo de Investigación para la Salud (FIS), which is co-funded by the European Regional Development Fund (four coordinated FIS projects led by Jordi Salas-Salvadó and Josep Vidal, including the following projects: PI13/00673, PI13/00492, PI13/00272, PI13/01123, PI13/00462, PI13/00233, PI13/02184, PI13/00728, PI13/01090, PI13/01056, PI14/01722, PI14/00636, PI14/00618, PI14/00696, PI14/01206, PI14/01919, PI14/00853, PI14/01374, PI16/00473, PI16/00662, PI16/01873, PI16/01094, PI16/00501, PI16/00533, PI16/00381, PI16/00366, PI16/01522, PI16/01120, PI17/00764, PI17/01183, PI17/00855, PI17/01347, PI17/00525, PI17/01827, PI17/00532, PI17/00215, PI17/01441, PI17/00508, PI17/01732, PI17/00926); the Especial Action Project entitled: Implementación y evaluación de una intervención intensiva sobre la actividad física Cohorte PREDIMED-PLUS grant to Jordi Salas-Salvadó; the European Research Council grant (Advanced Research Grant 2013–2019; 340918) to Miguel Ángel Martínez-Gonzalez; the Recercaixa grant to Jordi Salas-Salvadó (2013ACUP00194); grants from the Consejería de Salud de la Junta de Andalucía (PI0458/2013; PS0358/2016; PI0137/2018); the PROMETEO/2017/017 grant from the Generalitat Valenciana; Grant of support to research groups no. 35/2011 (Balearic Islands Gov. & FEDER funds) to Catalina M. Mascaró and Josep A. Tur; FPU Programme, PhD fellowship (Spanish Ministry of Science, Innovation & Universities) to Catalina M. Mascaró; the Astra Zeneca Young Investigators Award in Category of Obesity and Diabetes 2017 to Dora Romaguera; Juan de la Cierva-formación research grant (FJCI-2015-24058) of the Spanish Ministry of Economy, Industry and Competitiveness and European Social Funds to Jadwiga Konieczna; the ‘FOLIUM’ programme within the FUTURMed project from the Fundación Instituto de Investigación Sanitaria Illes Balears (financed by 2017annual plan of the sustainable tourism tax and at 50% with charge to the ESF Operational Program 2014–2020 ofthe Balearic Islands) to Jadwiga Konieczna. JR17/00022 contract to Olga Castaner from ISCIII. CIBERobn (Centros de Investigación Biomedica en Red: Obesidad y Nutrición), CIBEResp (Centros de Investigación Biomedica en Red: Epidemiología y Salud Publica) and CIBERdem (Centros de Investigación Biomedica en Red: Diabetes y Enfermedades). None of the funding sources took part in the design, collection, analysis or interpretation of the data and in writing the manuscript, or in the decision to submit the manuscript for publication
    corecore