64 research outputs found

    Curcumin: could this compound be useful in pregnancy and pregnancy-related complications?

    Get PDF
    Curcumin, the main polyphenol contained in turmeric root (Curcuma longa), has played a significant role in medicine for centuries. The growing interest in plant-derived substances has led to increased consumption of them also in pregnancy. The pleiotropic and multi-targeting actions of curcumin have made it very attractive as a health-promoting compound. In spite of the beneficial effects observed in various chronic diseases in humans, limited and fragmentary information is currently available about curcumin's effects on pregnancy and pregnancy-related complications. It is known that immune-metabolic alterations occurring during pregnancy have consequences on both maternal and fetal tissues, leading to short- and long-term complications. The reported anti-inflammatory, antioxidant, antitoxicant, neuroprotective, immunomodulatory, antiapoptotic, antiangiogenic, anti-hypertensive, and antidiabetic properties of curcumin appear to be encouraging, not only for the management of pregnancy-related disorders, including gestational diabetes mellitus (GDM), preeclampsia (PE), depression, preterm birth, and fetal growth disorders but also to contrast damage induced by natural and chemical toxic agents. The current review summarizes the latest data, mostly obtained from animal models and in vitro studies, on the impact of curcumin on the molecular mechanisms involved in pregnancy pathophysiology, with the aim to shed light on the possible beneficial and/or adverse effects of curcumin on pregnancy outcomes

    Modulatory Effects of Polyphenols on Apoptosis Induction: Relevance for Cancer Prevention

    Get PDF
    Polyphenols, occurring in fruit and vegetables, wine, tea, extra virgin olive oil, chocolate and other cocoa products, have been demonstrated to have clear antioxidant properties in vitro, and many of their biological actions have been attributed to their intrinsic reducing capabilities. However, it has become clear that, in complex biological systems, polyphenols exhibit several additional properties which are yet poorly understood. Apoptosis is a genetically controlled and evolutionarily conserved form of cell death of critical importance for the normal embryonic development and for the maintenance of tissue homeostasis in the adult organism. The malfunction of the death machinery may play a primary role in various pathological processes, since too little or too much apoptosis can lead to proliferative or degenerative diseases, respectively. Cancer cells are characterized by a deregulated proliferation, and/or an inability to undergo programmed cell death. A large body of evidence indicates that polyphenols can exert chemopreventive effects towards different organ specific cancers, affecting the overall process of carcinogenesis by several mechanisms: inhibition of DNA synthesis, modulation of ROS production, regulation of cell cycle arrest, modulation of survival/proliferation pathways. In addition, polyphenols can directly influence different points of the apoptotic process, and/or the expression of regulatory proteins. Although the bulk of data has been obtained in in vitro systems, a number of clinical studies suggesting a preventive and therapeutic effectiveness of polyphenols in vivo is available. However, a deeper knowledge of the underlying mechanisms responsible for the modulation of apoptosis by polyphenols, and their real effectiveness, is necessary in order to propose them as potential chemopreventive and chemotherapeutic candidates for cancer treatment

    Distinct blood and visceral adipose tissue regulatory T cell and innate lymphocyte profiles characterize obesity and colorectal cancer

    Get PDF
    Visceral adipose tissue (VAT) is a main site where metabolic and immunologic processes interplay to regulate, at local and systemic level, the inflammatory status and immune response. Obesity-associated inflammation and immune dysfunctions are inextricably linked to tumor but, in spite of intense efforts, the mechanisms underpinning this asso- ciation remain elusive. In this report, we characterized the profile of VAT-associated and circulating innate lymphocyte and regulatory T (T reg ) cell subsets underlying inflammatory conditions, such as obesity and colorectal cancer (CRC). Analysis of NK, NKT-like, Ξ³Ξ΄ T, and T reg cell populations in VAT and blood of healthy lean subjects revealed that CD56 hi NK and OX40 + T reg cells are more abundant in VAT with respect to blood. Conversely, CD56 dim NK and total T reg cells are most present in the circulation, while Ξ³Ξ΄ T lymphocytes are uniformly distributed in the two compartments. Interestingly, a reduced frequency of circulating activated T reg cells, and a concomitant preferential enrichment of OX40- expressing T reg cells in VAT, were selectively observed in obese (Ob) subjects, and directly correlated with body mass index. Likewise, CRC patients were characterized by a specific enrichment of VAT-associated NKT-like cells. In addition, Ob and CRC-affected individuals shared a significant reduction of the V Ξ³ 9V Ξ΄ 2/ Ξ³Ξ΄ T cell ratio at systemic level. The alterations in the relative proportions of T reg and NKT-like cells in VAT were found to correlate with the content of pro- and anti-inflammatory polyunsaturated fatty acids (PUFA), respectively. Overall, these results provide evidence for distinct alterations of the immune cell repertoire in the periphery with respect to the VAT microenvironment that uniquely characterize or are shared by different inflammatory conditions, such as obesity and CRC, and suggest that VAT PUFA composition may represent one of the factors that contribute to shape the immune phenotypes

    protocatechuic acids protects against high glucose induced insulin resistance in human visceral adipose tissue

    Get PDF
    Adipocytes exposed to high glucose concentrations exhibit impaired insulin signaling. Binding of insulin to its membrane receptor activates insulin metabolic pathway leading to IRS-1 and AKT phosphorylations. The accumulation of visceral adipose tissue (VAT) correlates with insulin resistance and metabolic syndrome. Anthocyanins (ACN) are bioactive food compounds of great nutritional interest. We have shown that protocatechuic acid (PCA), a major metabolite of ACN, might exert insulin-sensitizer activities in human visceral adipose tissue. The aim of this work was to define the protective role of PCA against insulin-resistance induced by high glucose in VAT.Methodology: VAT obtained from control subject (BMI≀25) were separated in four experimental groups: i) PCA: samples treated for 24 h with 100 ΞΌM PCA, ii) GLU: VAT treated with 30 mM glucose for 24 h, iii) PCA+GLU: 1 hour incubation with 100 ΞΌM PCA before adding glucose (30 mM, 24 h), iv) CTR: vehicle. After treatment, VAT groups were (or not) acutely stimulated with insulin (20 nM, 20 min). Tyr-IRS-1 and Ser-Akt phosphorylations were assessed by Western blotting (WB) in basal or insulin stimulated tissues in all experimental groups. Samples were assessed for IRS-1, IR, Akt and GLUT4 protein content by WB. Results: No differences in protein contents between experimental groups were found. GLU tissues showed a lower increment in insulin-stimulated phosphorylation of IRS-1 and Akt compared to CTR and PCA samples. This impaired activation was completely reversed by the pretreatment with PCA.Conclusion: An in-vitro insulin-resistance condition induced by high glucose was established in biopsies of VAT. PCA restores the ability of GLU-tissues to fully respond to insulin by increasing IRS-1 and Akt phosphorylations. These results confirm the insulin-sensitizer effect of PCA on VAT previously reported by our group. An anthocyanin rich diet might help to protect against insulin-resistance in VAT

    Gender-related differences in lifestyle may affect health status

    Get PDF
    Consistent epidemiological and clinical evidence strongly indicates that chronic noncommunicable diseases are largely associated with four lifestyle risk factors: inadequatediet, physical inactivity, tobacco use, and excessive alcohol use. Notably, obesity, a worldwide-growing pathological condition determined by the combination between inadequate diet and insufficient physical activity, is now considered a main risk factor for most chronic diseases. Dietary habits and physical activity are strongly influenced by gender attitudes and behaviors that promote different patterns of healthy or unhealthy lifestyles among women and men. Furthermore, different roles and unequal relations between genders strongly interact with differences in social and economic aspects as well as cultural and societal environment. Because of the complex network of factors involved in determining the risk for chronic diseases, it has been promoting a systemic approach that, by integrating sex and gender analysis, explores how sex-specific biological factors and gender-related social factors can interact to influence the health status

    Transcriptome Profiles of Human Visceral Adipocytes in Obesity and Colorectal Cancer Unravel the Effects of Body Mass Index and Polyunsaturated Fatty Acids on Genes and Biological Processes Related to Tumorigenesis

    Get PDF
    Obesity, a low-grade inflammatory condition, represents a major risk factor for the development of several pathologies including colorectal cancer (CRC). Although the adipose tissue inflammatory state is now recognized as a key player in obesity-associated morbidities, the underlying biological processes are complex and not yet precisely defined. To this end, we analyzed transcriptome profiles of human visceral adipocytes from lean and obese subjects affected or not by CRC by RNA sequencing (n = 6 subjects/category), and validated selected modulated genes by real-time qPCR. We report that obesity and CRC, conditions characterized by the common denominator of inflammation, promote changes in the transcriptional program of adipocytes mostly involving pathways and biological processes linked to extracellular matrix remodeling, and metabolism of pyruvate, lipids and glucose. Interestingly, although the transcriptome of adipocytes shows several alterations that are common to both disorders, some modifications are unique under obesity (e.g., pathways associated with inflammation) and CRC (e.g., TGFΞ² signaling and extracellular matrix remodeling) and are influenced by the body mass index (e.g., processes related to cell adhesion, angiogenesis, as well as metabolism). Indeed, cancer-induced transcriptional program is deeply affected by obesity, with adipocytes from obese individuals exhibiting a more complex response to the tumor. We also report that in vitro exposure of adipocytes to Ο‰3 and Ο‰6 polyunsaturated fatty acids (PUFA) endowed with either anti- or pro-inflammatory properties, respectively, modulates the expression of genes involved in processes potentially relevant to carcinogenesis, as assessed by real-time qPCR. All together our results suggest that genes involved in pyruvate, glucose and lipid metabolism, fibrosis and inflammation are central in the transcriptional reprogramming of adipocytes occurring in obese and CRC-affected individuals, as well as in their response to PUFA exposure. Moreover, our results indicate that the transcriptional program of adipocytes is strongly influenced by the BMI status in CRC subjects. The dysregulation of these interrelated processes relevant for adipocyte functions may contribute to create more favorable conditions to tumor establishment or favor tumor progression, thus linking obesity and colorectal cancer

    Critical role of maternal selenium nutrition in neurodevelopment: Effects on offspring behavior and neuroinflammatory profile

    Get PDF
    Research in both animals and humans shows that some nutrients are important in pregnancy and during the first years of life to support brain and cognitive development. Our aim was to evaluate the role of selenium (Se) in supporting brain and behavioral plasticity and maturation. Pregnant and lactating female rats and their offspring up to postnatal day 40 were fed isocaloric diets differing in Se content - i.e., Optimal, SubOptimal, and Deficient - and neurodevelopmental, neu-roinflammatory, and anti-oxidant markers were analyzed. We observed early adverse behavioral changes in juvenile rats only in SubOptimal offspring. In addition, SubOptimal, more than Deficient supply reduced basal glial reactivity in sex dimorphic and brain-area specific fashion. In female offspring, Deficient and SubOptimal diets reduced the antioxidant Glutathione peroxidase (GPx) activity in the cortex and in the liver, the latter being the key organ regulating Se metabo-lism and homeostasis. The finding that Se SubOptimal was more detrimental than Se Deficient diet may suggest that maternal Se Deficient diet, leading to a lower Se supply at earlier stages of fetal development, stimulated homeostatic mechanisms in the offspring that were not initiated by SubOptimal Se. Our observations demonstrate that even moderate Se deficiency during early life negatively may affect, in a sex-specific manner, optimal brain development

    Bioavailability of the Polyphenols: Status and Controversies

    Get PDF
    The current interest in polyphenols has been driven primarily by epidemiological studies. However, to establish conclusive evidence for the effectiveness of dietary polyphenols in disease prevention, it is useful to better define the bioavailability of the polyphenols, so that their biological activity can be evaluated. The bioavailability appears to differ greatly among the various phenolic compounds, and the most abundant ones in our diet are not necessarily those that have the best bioavailability profile. In the present review, we focus on the factors influencing the bioavailability of the polyphenols. Moreover, a critical overview on the difficulties and the controversies of the studies on the bioavailability is discussed
    • …
    corecore