97 research outputs found
Multiverse analyses in the classroom
Multivariate analysis of psychological dat
Representational shifts during category learning
Prototype and exemplar models form two extremes in a class of mixture model accounts of human category learning. This class of models allows flexible representations that can interpolate from simple prototypes to highly differentiated exemplar accounts. We apply one such framework to data that afford an insight into the nature of representational changes during category learning. While generally supporting the notion of a prototype-to-exemplar shift during learning, the detailed analysis suggests that the nature of the changes is considerably more complex than previous work suggests.Wolf Vanpaemel and Daniel J. Navarr
How do I know what my theory predicts?
To get evidence for or against a theory relative to the null hypothesis, one needs to know what the theory predicts. The amount of evidence can then be quantified by a Bayes factor. Specifying the sizes of the effect one’s theory predicts may not come naturally, but I show some ways of thinking about the problem, some simple heuristics that are often useful when one has little relevant prior information. These heuristics include the room-to-move heuristic (for comparing mean differences), the ratio-of-scales heuristic (for regression slopes), the ratio-of-means heuristic (for regression slopes), the basic-effect heuristic (for analysis of variance effects), and the total-effect heuristic (for mediation analysis)
Four reasons to prefer Bayesian analyses over significance testing
Inference using significance testing and Bayes factors is compared and contrasted in five case studies based on real research. The first study illustrates that the methods will often agree, both in motivating researchers to conclude that H1 is supported better than H0, and the other way round, that H0 is better supported than H1. The next four, however, show that the methods will also often disagree. In these cases, the aim of the paper will be to motivate the sensible evidential conclusion, and then see which approach matches those intuitions. Specifically, it is shown that a high-powered non-significant result is consistent with no evidence for H0 over H1 worth mentioning, which a Bayes factor can show, and, conversely, that a low-powered non-significant result is consistent with substantial evidence for H0 over H1, again indicated by Bayesian analyses. The fourth study illustrates that a high-powered significant result may not amount to any evidence for H1 over H0, matching the Bayesian conclusion. Finally, the fifth study illustrates that different theories can be evidentially supported to different degrees by the same data; a fact that P-values cannot reflect but Bayes factors can. It is argued that appropriate conclusions match the Bayesian inferences, but not those based on significance testing, where they disagree
Analyzing subcomponents of affective dysregulation in borderline personality disorder in comparison to other clinical groups using multiple e-diary datasets
Background: Affective dysregulation is widely regarded as being the core problem in patients with borderline personality disorder (BPD). Moreover, BPD is the disorder mainly associated with affective dysregulation. However, the empirical confirmation of the specificity of affective dysregulation for BPD is still pending. We used a validated approach from basic affective science that allows for simultaneously analyzing three interdependent components of affective dysregulation that are disturbed in patients with BPD: homebase, variability, and attractor strength (return to baseline).
Methods: We applied two types of multilevel models on two e-diary datasets to investigate group differences regarding three subcomponents between BPD patients (n =43; n =51) and patients with posttraumatic stress disorder (PTSD; n= 28) and those with bulimia nervosa (BN; n= 20) as clinical control groups in dataset 1, and patients with panic disorder (PD; n= 26) and those with major depression (MD; n =25) as clinical control groups in dataset 2. In addition, healthy controls (n= 28; n= 40) were included in the analyses. In both studies, e-diaries were used to repeatedly collect data about affective experiences during participants’ daily lives. In study 1 a high-frequency sampling strategy with assessments in 15 min-intervals over 24 h was applied, whereas the assessments occurred every waking hour over 48 h in study 2. The local ethics committees approved both studies, and all participants provided written informed consent.
Results: In contradiction to our hypotheses, BPD patients did not consistently show altered affective dysregulation compared to the clinical patient groups. The only differences in affective dynamics in BPD patients emerged with regard to one of three subcomponents, affective homebase. However, these results were not even consistent. Conversely, comparing the patients to healthy controls revealed a pattern of more negative affective homebases, higher levels of affective variability, and (partially) reduced returns to baseline in the patient groups.
Conclusions: Our results indicate that affective dysregulation constitutes a transdiagnostic mechanism that manifests in similar ways in several different mental disorders. We point out promising prospects that might help to elucidate the common and distinctive mechanisms that underlie several different disorders and that should be addressed in future studies
A review of applications of the Bayes factor in psychological research
The last 25 years have shown a steady increase in attention for the Bayes factor as a tool for hypothesis evaluation and model selection. The present review highlights the potential of the Bayes factor in psychological research. We discuss six types of applications: Bayesian evaluation of point null, interval, and informative hypotheses, Bayesian evidence synthesis, Bayesian variable selection and model averaging, and Bayesian evaluation of cognitive models. We elaborate what each application entails, give illustrative examples, and provide an overview of key references and software with links to other applications. The paper is concluded with a discussion of the opportunities and pitfalls of Bayes factor applications and a sketch of corresponding future research lines
A pre-registered, multi-lab non-replication of the Action-sentence Compatibility Effect (ACE)
The Action-sentence Compatibility Effect (ACE) is a well-known demonstration of the role of motor activity in the comprehension of language. Participants are asked to make sensibility judgments on sentences by producing movements toward the body or away from the body. The ACE is the finding that movements are faster when the direction of the movement (e.g., toward) matches the direction of the action in the to-be-judged sentence (e.g., Art gave you the pen describes action toward you). We report on a pre- registered, multi-lab replication of one version of the ACE. The results show that none of the 18 labs involved in the study observed a reliable ACE, and that the meta-analytic estimate of the size of the ACE was essentially zero
Recommended from our members
Supervised versus unsupervised categorization: Two sides of the same coin?
Supervised and unsupervised categorization have been studied in separate research traditions. A handful of studies have attempted to explore a possible convergence between the two. The present research builds on these studies, by comparing the unsupervised categorization results of Pothos et al. (submitted; 2008) with the results from two procedures of supervised categorization. In two experiments, we tested 375 participants with nine different stimulus sets, and examined the relation between ease of learning of a classification, memory for a classification, and spontaneous preference for a classification. After taking into account the role of the number of category labels (clusters) in supervised learning, we found the three variables to be closely associated with each other. Our results provide encouragement for researchers seeking unified theoretical explanations for supervised and unsupervised categorization, but raise a range of challenging theoretical questions
- …